Skip to main content

AWS S3 Vectors Engine

To use S3 Vectors as a Vector Engine, specify s3_vectors as the engine, and configure the associated location and AWS credentials.

datasets:
- from: spice.ai:dataset.with.embeddings
name: my_dataset
vectors:
enabled: true
engine: s3_vectors
params:
s3_vectors_bucket: my-s3-vector-bucket
columns:
- name: "body"
embeddings:
- from: bedrock_titan

embeddings:
- name: bedrock_titan
# ... Define an embedding model to use.

Parameters​

ParameterDescriptionExample Value
s3_vectors_arnThe S3 vectors index to use. Incompatible with s3_vectors_bucket and s3_vectors_index.arn:aws:s3vectors:123456654321/bucket/a-bucket/index/index-of-important-embeddings
s3_vectors_aws_access_key_idThe access key ID for the S3 vectors index-
s3_vectors_aws_regionThe AWS region for the S3 vectors index.us-east-1
s3_vectors_aws_secret_access_keyThe secret access key for the S3 vectors index-
s3_vectors_aws_session_tokenSession token for the S3 vectors index.-
s3_vectors_bucketThe S3 vectors bucket to use. If s3_vectors_index is not specified, an index will be created based on the underlying embedding column. Incompatible with s3_vectors_arna-bucket
s3_vectors_endpointThe endpoint for the S3 vectors indexs3vectors.us-east-2.api.aws
s3_vectors_indexThe name of the s3 vectors index to use or create. Incompatible with s3_vectors_arn.index-of-important-embeddings
Limitations
  • s3_vectors_index and s3_vectors_arn specify a single index for the dataset and therefore should not be used with a dataset containing more than one embedding column.