Hash Index for Arrow Acceleration
Hash index is an experimental feature available in Spice v1.11.0-rc.2 and later.
The hash index is an optional, high-performance indexing feature for Arrow-accelerated datasets. It provides O(1) point lookups on primary key columns, dramatically improving query performance for equality predicates.
Key Features
- O(1) Point Lookups: Direct row access via primary key without full table scans
- 256-Shard Design: Minimizes lock contention for concurrent reads
- SIMD-Optimized Hashing: Uses XXH3_64 for fast, high-quality hashing
- Built-in Bloom Filter: Fast negative lookups to skip unnecessary hash table probes
- Auto-Threshold: Index is only built when data size exceeds a minimum threshold
Configuration
To use the hash index, explicitly enable it and specify a primary key:
datasets:
- from: s3://bucket/orders.parquet
name: orders
acceleration:
engine: arrow
primary_key: order_id
params:
hash_index: enabled
Configuration Options
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
hash_index | enabled/disabled | No | disabled | Enable hash indexing |
primary_key | string or list | Yes (if hash_index enabled) | None | Column(s) to index |
Supported Data Types
The hash index supports the following primary key column types:
Primitive Types
Int8,Int16,Int32,Int64UInt8,UInt16,UInt32,UInt64
String Types
Utf8,LargeUtf8
Binary Types
Binary,LargeBinary
Query Optimization
The hash index automatically accelerates queries with equality predicates on indexed columns.
Optimized Queries
-- Single key lookup (uses index)
SELECT * FROM my_dataset WHERE id = 123;
-- Multiple key lookups (uses index for each key)
SELECT * FROM my_dataset WHERE id IN (1, 2, 3);
Non-Optimized Queries
-- Range queries (full scan)
SELECT * FROM my_dataset WHERE id > 100 AND id < 200;
-- Pattern matching (full scan)
SELECT * FROM my_dataset WHERE id LIKE 'A%';
-- Composite key partial match (full scan)
SELECT * FROM my_dataset WHERE region = 'US';
-- (If composite key is (region, customer_id), both must be specified)
Index Threshold
The hash index is only built when the dataset exceeds a minimum size:
threshold = 256 × CPU_cores
| CPU Cores | Minimum Rows for Index |
|---|---|
| 1 | 256 |
| 4 | 1,024 |
| 8 | 2,048 |
| 16 | 4,096 |
| 32 | 8,192 |
For small tables below the threshold, a full scan is faster than index maintenance overhead.
Performance
Bloom Filter Performance
The built-in bloom filter provides:
- ~0.82% false positive rate (10 bits/item, 7 hash functions)
- O(1) negative lookup confirmation
- Reduced unnecessary hash table probes for non-existent keys
Memory Usage
| Component | Memory per Entry |
|---|---|
| Hash slot | 16 bytes (8-byte hash + 8-byte location) |
| Bloom filter | ~1.25 bytes |
| Total | ~17.25 bytes per indexed row |
Estimating Memory
For a 10 million row dataset:
Index memory ≈ 10M × 17.25 bytes ≈ 165 MB
Architecture
Sharded Hash Table
The index uses 256 independent shards to minimize lock contention:
┌────────────────────────────────────────────────┐
│ HashIndex │
├────────────────────────────────────────────────┤
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Shard 0 │ │ Shard 1 │ ... │Shard 255│ │
│ │ RwLock │ │ RwLock │ │ RwLock │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Hash │ │ Hash │ ... │ Hash │ │
│ │ Table │ │ Table │ │ Table │ │
│ └─────────┘ └─────────┘ └─────────┘ │
├────────────────────────────────────────────────┤
│ ┌─────────────────────────────────────────┐ │
│ │ Optional Bloom Filter │ │
│ │ (Fast Negative Lookups) │ │
│ └─────────────────────────────────────────┘ │
└────────────────────────────────────────────────┘
Shard Selection: Uses XOR-folded hash bits: ((hash >> 56) ^ (hash >> 48) ^ hash) & 0xFF
Row Location
Each indexed key maps to a RowLocation:
RowLocation {
partition: u32, // Partition index
batch: u32, // Batch index within partition
row: u32, // Row index within batch
}
Hash Function
Uses XXH3_64 with a fixed seed (0x5370_6963_6541_4920 = "SpiceAI ") for:
- Deterministic hashing across instances
- High-quality distribution (passes SMHasher)
- SIMD acceleration on arm64/amd64
Limitations
- Arrow Engine Only: Hash index is only available for
engine: arrowacceleration - Single Key Lookups: Optimizes equality predicates, not ranges or patterns
- Experimental: API and behavior may change in future releases
- No Persistence: Index is rebuilt on restart (data persists, index is in-memory)
- Duplicate Keys: Primary key columns must have unique values
Troubleshooting
"No index available for point lookup"
Cause: Dataset row count is below the index threshold.
Solution: This is expected behavior for small datasets. The full scan is faster than index overhead.
Warning: "Add 'hash_index: enabled' to use primary_key for fast lookups"
Cause: primary_key is specified but hash_index is not enabled.
Solution: Add hash_index: enabled to params:
params:
hash_index: enabled
High Memory Usage
Cause: Index consumes ~17 bytes per row.
Solution:
- Disable hash_index for datasets where point lookups are rare
- Consider using a different acceleration engine for very large datasets
