Aggregate Functions
Spice is built on Apache DataFusion and uses the PostgreSQL dialect, even when querying datasources with different SQL dialects. When using a data accelerator like DuckDB, function support is specific to each acceleration engine, and not all functions are supported by all acceleration engines.
Aggregate functions operate on a set of values to compute a single result.
Many aggregate functions can also be used as window functions by adding an OVER clause. Window functions perform calculations across a set of rows related to the current row without collapsing them into a single output row.
SELECT
employee_id,
salary,
AVG(salary) OVER (PARTITION BY dept_id) AS dept_avg_salary
FROM employees;
Supported window functions include: ROW_NUMBER, RANK, DENSE_RANK, PERCENT_RANK, CUME_DIST, NTILE, LAG, LEAD, FIRST_VALUE, LAST_VALUE, NTH_VALUE, and all general aggregate functions.
Filter clause
Aggregate functions support the SQL FILTER (WHERE ...) clause to restrict which input rows contribute to the aggregate result.
function([exprs]) FILTER (WHERE condition)
Example:
SELECT
sum(salary) FILTER (WHERE salary > 0) AS sum_positive_salaries,
count(*) FILTER (WHERE active) AS active_count
FROM employees;
Note: When no rows pass the filter, COUNT returns 0 while SUM/AVG/MIN/MAX return NULL.
WITHIN GROUP / Ordered-set Aggregates
Some aggregate functions accept the SQL WITHIN GROUP (ORDER BY ...) clause to specify the ordering the aggregate relies on. These are called ordered-set aggregate functions.
percentile_cont(0.5) WITHIN GROUP (ORDER BY value)
The built-in aggregate functions that support WITHIN GROUP are:
percentile_cont— exact percentile aggregateapprox_percentile_cont— approximate percentile using the t-digest algorithmapprox_percentile_cont_with_weight— approximate weighted percentile
Using WITHIN GROUP with other aggregates (such as SUM or COUNT) results in an error.
General Functions
- array_agg
- avg
- bit_and
- bit_or
- bit_xor
- bool_and
- bool_or
- count
- first_value
- grouping
- last_value
- max
- mean
- median
- min
- percentile_cont
- string_agg
- sum
- var
- var_pop
- var_population
- var_samp
- var_sample
array_agg
Returns an array created from the expression elements. If ordering is required, elements are inserted in the specified order. This aggregation function can only mix DISTINCT and ORDER BY if the ordering expression is exactly the same as the argument expression.
array_agg(expression [ORDER BY expression])
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT array_agg(column_name ORDER BY other_column) FROM table_name;
+-----------------------------------------------+
| array_agg(column_name ORDER BY other_column) |
+-----------------------------------------------+
| [element1, element2, element3] |
+-----------------------------------------------+
> SELECT array_agg(DISTINCT column_name ORDER BY column_name) FROM table_name;
+--------------------------------------------------------+
| array_agg(DISTINCT column_name ORDER BY column_name) |
+--------------------------------------------------------+
| [element1, element2, element3] |
+--------------------------------------------------------+
avg
Returns the average of numeric values in the specified column.
avg(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT avg(column_name) FROM table_name;
+---------------------------+
| avg(column_name) |
+---------------------------+
| 42.75 |
+---------------------------+
Aliases
- mean
bit_and
Computes the bitwise AND of all non-null input values.
bit_and(expression)
Arguments
- expression: Integer expression to operate on. Can be a constant, column, or function, and any combination of operators.
bit_or
Computes the bitwise OR of all non-null input values.
bit_or(expression)
Arguments
- expression: Integer expression to operate on. Can be a constant, column, or function, and any combination of operators.
bit_xor
Computes the bitwise exclusive OR of all non-null input values.
bit_xor(expression)
Arguments
- expression: Integer expression to operate on. Can be a constant, column, or function, and any combination of operators.
bool_and
Returns true if all non-null input values are true, otherwise false.
bool_and(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT bool_and(column_name) FROM table_name;
+----------------------------+
| bool_and(column_name) |
+----------------------------+
| true |
+----------------------------+
bool_or
Returns true if any non-null input value is true, otherwise false.
bool_or(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT bool_or(column_name) FROM table_name;
+----------------------------+
| bool_or(column_name) |
+----------------------------+
| true |
+----------------------------+
count
Returns the number of non-null values in the specified column. To include null values in the total count, use count(*).
count(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT count(column_name) FROM table_name;
+-----------------------+
| count(column_name) |
+-----------------------+
| 100 |
+-----------------------+
> SELECT count(*) FROM table_name;
+------------------+
| count(*) |
+------------------+
| 120 |
+------------------+
first_value
Returns the first element in an aggregation group according to the requested ordering. If no ordering is given, returns an arbitrary element from the group.
first_value(expression [ORDER BY expression])
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT first_value(column_name ORDER BY other_column) FROM table_name;
+-----------------------------------------------+
| first_value(column_name ORDER BY other_column)|
+-----------------------------------------------+
| first_element |
+-----------------------------------------------+
grouping
Returns 1 if the data is aggregated across the specified column, or 0 if it is not aggregated in the result set.
grouping(expression)
Arguments
- expression: Expression to evaluate whether data is aggregated across the specified column. Can be a constant, column, or function.
Example
> SELECT column_name, GROUPING(column_name) AS group_column
FROM table_name
GROUP BY GROUPING SETS ((column_name), ());
+-------------+-------------+
| column_name | group_column |
+-------------+-------------+
| value1 | 0 |
| value2 | 0 |
| NULL | 1 |
+-------------+-------------+
last_value
Returns the last element in an aggregation group according to the requested ordering. If no ordering is given, returns an arbitrary element from the group.
last_value(expression [ORDER BY expression])
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT last_value(column_name ORDER BY other_column) FROM table_name;
+-----------------------------------------------+
| last_value(column_name ORDER BY other_column) |
+-----------------------------------------------+
| last_element |
+-----------------------------------------------+
max
Returns the maximum value in the specified column.
max(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT max(column_name) FROM table_name;
+----------------------+
| max(column_name) |
+----------------------+
| 150 |
+----------------------+
mean
Alias of avg.
median
Returns the median value in the specified column.
median(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT median(column_name) FROM table_name;
+----------------------+
| median(column_name) |
+----------------------+
| 45.5 |
+----------------------+
min
Returns the minimum value in the specified column.
min(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT min(column_name) FROM table_name;
+----------------------+
| min(column_name) |
+----------------------+
| 12 |
+----------------------+
percentile_cont
Returns the exact percentile of input values, interpolating between values if needed.
percentile_cont(percentile) WITHIN GROUP (ORDER BY expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
- percentile: Percentile to compute. Must be a float value between 0 and 1 (inclusive).
Example
> SELECT percentile_cont(0.75) WITHIN GROUP (ORDER BY column_name) FROM table_name;
+----------------------------------------------------------+
| percentile_cont(0.75) WITHIN GROUP (ORDER BY column_name) |
+----------------------------------------------------------+
| 45.5 |
+----------------------------------------------------------+
An alternate syntax is also supported:
> SELECT percentile_cont(column_name, 0.75) FROM table_name;
+---------------------------------------+
| percentile_cont(column_name, 0.75) |
+---------------------------------------+
| 45.5 |
+---------------------------------------+
Aliases
- quantile_cont
string_agg
Concatenates the values of string expressions and places separator values between them. If ordering is required, strings are concatenated in the specified order. This aggregation function can only mix DISTINCT and ORDER BY if the ordering expression is exactly the same as the first argument expression.
string_agg([DISTINCT] expression, delimiter [ORDER BY expression])
Arguments
- expression: The string expression to concatenate. Can be a column or any valid string expression.
- delimiter: A literal string used as a separator between the concatenated values.
Example
> SELECT string_agg(name, ', ') AS names_list
FROM employee;
+--------------------------+
| names_list |
+--------------------------+
| Alice, Bob, Bob, Charlie |
+--------------------------+
> SELECT string_agg(name, ', ' ORDER BY name DESC) AS names_list
FROM employee;
+--------------------------+
| names_list |
+--------------------------+
| Charlie, Bob, Bob, Alice |
+--------------------------+
> SELECT string_agg(DISTINCT name, ', ' ORDER BY name DESC) AS names_list
FROM employee;
+--------------------------+
| names_list |
+--------------------------+
| Charlie, Bob, Alice |
+--------------------------+
sum
Returns the sum of all values in the specified column.
sum(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT sum(column_name) FROM table_name;
+-----------------------+
| sum(column_name) |
+-----------------------+
| 12345 |
+-----------------------+
var
Returns the statistical sample variance of a set of numbers.
var(expression)
Arguments
- expression: Numeric expression to operate on. Can be a constant, column, or function, and any combination of operators.
Aliases
- var_sample
- var_samp
var_pop
Returns the statistical population variance of a set of numbers.
var_pop(expression)
Arguments
- expression: Numeric expression to operate on. Can be a constant, column, or function, and any combination of operators.
Aliases
- var_population
var_population
Alias of var_pop.
var_samp
Alias of var.
var_sample
Alias of var.
Statistical Functions
- corr
- covar
- covar_pop
- covar_samp
- nth_value
- regr_avgx
- regr_avgy
- regr_count
- regr_intercept
- regr_r2
- regr_slope
- regr_sxx
- regr_sxy
- regr_syy
- stddev
- stddev_pop
- stddev_samp
corr
Returns the coefficient of correlation between two numeric values.
corr(expression1, expression2)
Arguments
- expression1: First expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression2: Second expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT corr(column1, column2) FROM table_name;
+--------------------------------+
| corr(column1, column2) |
+--------------------------------+
| 0.85 |
+--------------------------------+
covar
Alias of covar_samp.
covar_pop
Returns the sample covariance of a set of number pairs.
covar_samp(expression1, expression2)
Arguments
- expression1: First expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression2: Second expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT covar_samp(column1, column2) FROM table_name;
+-----------------------------------+
| covar_samp(column1, column2) |
+-----------------------------------+
| 8.25 |
+-----------------------------------+
covar_samp
Returns the sample covariance of a set of number pairs.
covar_samp(expression1, expression2)
Arguments
- expression1: First expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression2: Second expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT covar_samp(column1, column2) FROM table_name;
+-----------------------------------+
| covar_samp(column1, column2) |
+-----------------------------------+
| 8.25 |
+-----------------------------------+
Aliases
- covar
nth_value
Returns the nth value in a group of values.
nth_value(expression, n ORDER BY expression)
Arguments
- expression: The column or expression to retrieve the nth value from.
- n: The position (nth) of the value to retrieve, based on the ordering.
Example
> SELECT dept_id, salary, NTH_VALUE(salary, 2) OVER (PARTITION BY dept_id ORDER BY salary ASC) AS second_salary_by_dept
FROM employee;
+---------+--------+-------------------------+
| dept_id | salary | second_salary_by_dept |
+---------+--------+-------------------------+
| 1 | 30000 | NULL |
| 1 | 40000 | 40000 |
| 1 | 50000 | 40000 |
| 2 | 35000 | NULL |
| 2 | 45000 | 45000 |
+---------+--------+-------------------------+
regr_avgx
Computes the average of the independent variable (input) expression_x for the non-null paired data points.
regr_avgx(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table daily_sales(day int, total_sales int) as values (1,100), (2,150), (3,200), (4,NULL), (5,250);
select * from daily_sales;
+-----+-------------+
| day | total_sales |
| --- | ----------- |
| 1 | 100 |
| 2 | 150 |
| 3 | 200 |
| 4 | NULL |
| 5 | 250 |
+-----+-------------+
SELECT regr_avgx(total_sales, day) AS avg_day FROM daily_sales;
+----------+
| avg_day |
+----------+
| 2.75 |
+----------+
regr_avgy
Computes the average of the dependent variable (output) expression_y for the non-null paired data points.
regr_avgy(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table daily_temperature(day int, temperature int) as values (1,30), (2,32), (3, NULL), (4,35), (5,36);
select * from daily_temperature;
+-----+-------------+
| day | temperature |
| --- | ----------- |
| 1 | 30 |
| 2 | 32 |
| 3 | NULL |
| 4 | 35 |
| 5 | 36 |
+-----+-------------+
-- temperature as Dependent Variable(Y), day as Independent Variable(X)
SELECT regr_avgy(temperature, day) AS avg_temperature FROM daily_temperature;
+-----------------+
| avg_temperature |
+-----------------+
| 33.25 |
+-----------------+
regr_count
Counts the number of non-null paired data points.
regr_count(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table daily_metrics(day int, user_signups int) as values (1,100), (2,120), (3, NULL), (4,110), (5,NULL);
select * from daily_metrics;
+-----+---------------+
| day | user_signups |
| --- | ------------- |
| 1 | 100 |
| 2 | 120 |
| 3 | NULL |
| 4 | 110 |
| 5 | NULL |
+-----+---------------+
SELECT regr_count(user_signups, day) AS valid_pairs FROM daily_metrics;
+-------------+
| valid_pairs |
+-------------+
| 3 |
+-------------+
regr_intercept
Computes the y-intercept of the linear regression line. For the equation (y = kx + b), this function returns b.
regr_intercept(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table weekly_performance(week int, productivity_score int) as values (1,60), (2,65), (3, 70), (4,75), (5,80);
select * from weekly_performance;
+------+---------------------+
| week | productivity_score |
| ---- | ------------------- |
| 1 | 60 |
| 2 | 65 |
| 3 | 70 |
| 4 | 75 |
| 5 | 80 |
+------+---------------------+
SELECT regr_intercept(productivity_score, week) AS intercept FROM weekly_performance;
+----------+
|intercept|
|intercept |
+----------+
| 55 |
+----------+
regr_r2
Computes the square of the correlation coefficient between the independent and dependent variables.
regr_r2(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table weekly_performance(day int ,user_signups int) as values (1,60), (2,65), (3, 70), (4,75), (5,80);
select * from weekly_performance;
+-----+--------------+
| day | user_signups |
+-----+--------------+
| 1 | 60 |
| 2 | 65 |
| 3 | 70 |
| 4 | 75 |
| 5 | 80 |
+-----+--------------+
SELECT regr_r2(user_signups, day) AS r_squared FROM weekly_performance;
+---------+
|r_squared|
+---------+
| 1.0 |
+---------+
regr_slope
Returns the slope of the linear regression line for non-null pairs in aggregate columns. Given input column Y and X: regr_slope(Y, X) returns the slope (k in Y = k*X + b) using minimal RSS fitting.
regr_slope(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table weekly_performance(day int, user_signups int) as values (1,60), (2,65), (3, 70), (4,75), (5,80);
select * from weekly_performance;
+-----+--------------+
| day | user_signups |
+-----+--------------+
| 1 | 60 |
| 2 | 65 |
| 3 | 70 |
| 4 | 75 |
| 5 | 80 |
+-----+--------------+
SELECT regr_slope(user_signups, day) AS slope FROM weekly_performance;
+--------+
| slope |
+--------+
| 5.0 |
+--------+
regr_sxx
Computes the sum of squares of the independent variable.
regr_sxx(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table study_hours(student_id int, hours int, test_score int) as values (1,2,55), (2,4,65), (3,6,75), (4,8,85), (5,10,95);
select * from study_hours;
+------------+-------+------------+
| student_id | hours | test_score |
+------------+-------+------------+
| 1 | 2 | 55 |
| 2 | 4 | 65 |
| 3 | 6 | 75 |
| 4 | 8 | 85 |
| 5 | 10 | 95 |
+------------+-------+------------+
SELECT regr_sxx(test_score, hours) AS sxx FROM study_hours;
+------+
| sxx |
+------+
| 40.0 |
+------+
regr_sxy
Computes the sum of products of paired data points.
regr_sxy(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table employee_productivity(week int, productivity_score int) as values(1,60), (2,65), (3,70);
select * from employee_productivity;
+------+--------------------+
| week | productivity_score |
+------+--------------------+
| 1 | 60 |
| 2 | 65 |
| 3 | 70 |
+------+--------------------+
SELECT regr_sxy(productivity_score, week) AS sum_product_deviations FROM employee_productivity;
+------------------------+
| sum_product_deviations |
+------------------------+
| 10.0 |
+------------------------+
regr_syy
Computes the sum of squares of the dependent variable.
regr_syy(expression_y, expression_x)
Arguments
- expression_y: Dependent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
- expression_x: Independent variable expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
create table employee_productivity(week int, productivity_score int) as values (1,60), (2,65), (3,70);
select * from employee_productivity;
+------+--------------------+
| week | productivity_score |
+------+--------------------+
| 1 | 60 |
| 2 | 65 |
| 3 | 70 |
+------+--------------------+
SELECT regr_syy(productivity_score, week) AS sum_squares_y FROM employee_productivity;
+---------------+
| sum_squares_y |
+---------------+
| 50.0 |
+---------------+
stddev
Returns the standard deviation of a set of numbers.
stddev(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT stddev(column_name) FROM table_name;
+----------------------+
| stddev(column_name) |
+----------------------+
| 12.34 |
+----------------------+
Aliases
- stddev_samp
stddev_pop
Returns the population standard deviation of a set of numbers.
stddev_pop(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT stddev_pop(column_name) FROM table_name;
+--------------------------+
| stddev_pop(column_name) |
+--------------------------+
| 10.56 |
+--------------------------+
stddev_samp
Alias of stddev.
Approximate Functions
approx_distinct
Returns the approximate number of distinct input values calculated using the HyperLogLog algorithm.
approx_distinct(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT approx_distinct(column_name) FROM table_name;
+-----------------------------------+
| approx_distinct(column_name) |
+-----------------------------------+
| 42 |
+-----------------------------------+
approx_median
Returns the approximate median (50th percentile) of input values. It is an alias of approx_percentile_cont(0.5) WITHIN GROUP (ORDER BY x).
approx_median(expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
Example
> SELECT approx_median(column_name) FROM table_name;
+-----------------------------------+
| approx_median(column_name) |
+-----------------------------------+
| 23.5 |
+-----------------------------------+
approx_percentile_cont
Returns the approximate percentile of input values using the t-digest algorithm.
approx_percentile_cont(percentile [, centroids]) WITHIN GROUP (ORDER BY expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
- percentile: Percentile to compute. Must be a float value between 0 and 1 (inclusive).
- centroids: Number of centroids to use in the t-digest algorithm. Default is 100. A higher number results in more accurate approximation but requires more memory.
Example
> SELECT approx_percentile_cont(0.75) WITHIN GROUP (ORDER BY column_name) FROM table_name;
+------------------------------------------------------------------+
| approx_percentile_cont(0.75) WITHIN GROUP (ORDER BY column_name) |
+------------------------------------------------------------------+
| 65.0 |
+------------------------------------------------------------------+
> SELECT approx_percentile_cont(0.75, 100) WITHIN GROUP (ORDER BY column_name) FROM table_name;
+-----------------------------------------------------------------------+
| approx_percentile_cont(0.75, 100) WITHIN GROUP (ORDER BY column_name) |
+-----------------------------------------------------------------------+
| 65.0 |
+-----------------------------------------------------------------------+
An alternate syntax is also supported:
> SELECT approx_percentile_cont(column_name, 0.75) FROM table_name;
+-----------------------------------------------+
| approx_percentile_cont(column_name, 0.75) |
+-----------------------------------------------+
| 65.0 |
+-----------------------------------------------+
> SELECT approx_percentile_cont(column_name, 0.75, 100) FROM table_name;
+----------------------------------------------------------+
| approx_percentile_cont(column_name, 0.75, 100) |
+----------------------------------------------------------+
| 65.0 |
+----------------------------------------------------------+
approx_percentile_cont_with_weight
Returns the weighted approximate percentile of input values using the t-digest algorithm.
approx_percentile_cont_with_weight(weight, percentile [, centroids]) WITHIN GROUP (ORDER BY expression)
Arguments
- expression: The expression to operate on. Can be a constant, column, or function, and any combination of operators.
- weight: Expression to use as weight. Can be a constant, column, or function, and any combination of arithmetic operators.
- percentile: Percentile to compute. Must be a float value between 0 and 1 (inclusive).
- centroids: Number of centroids to use in the t-digest algorithm. Default is 100. A higher number results in more accurate approximation but requires more memory.
Example
> SELECT approx_percentile_cont_with_weight(weight_column, 0.90) WITHIN GROUP (ORDER BY column_name) FROM table_name;
+---------------------------------------------------------------------------------------------+
| approx_percentile_cont_with_weight(weight_column, 0.90) WITHIN GROUP (ORDER BY column_name) |
+---------------------------------------------------------------------------------------------+
| 78.5 |
+---------------------------------------------------------------------------------------------+
> SELECT approx_percentile_cont_with_weight(weight_column, 0.90, 100) WITHIN GROUP (ORDER BY column_name) FROM table_name;
+--------------------------------------------------------------------------------------------------+
| approx_percentile_cont_with_weight(weight_column, 0.90, 100) WITHIN GROUP (ORDER BY column_name) |
+--------------------------------------------------------------------------------------------------+
| 78.5 |
+--------------------------------------------------------------------------------------------------+
An alternative syntax is also supported:
> SELECT approx_percentile_cont_with_weight(column_name, weight_column, 0.90) FROM table_name;
+--------------------------------------------------+
| approx_percentile_cont_with_weight(column_name, weight_column, 0.90) |
+--------------------------------------------------+
| 78.5 |
+--------------------------------------------------+
