Skip to main content

8 posts tagged with "distributed-query"

Distributed Query related topics and usage

View All Tags

Spice v1.11.0 (Jan 28, 2026)

· 58 min read
William Croxson
Senior Software Engineer at Spice AI

Announcing the release of Spice v1.11.0-stable! ⚡

In Spice v1.11.0, Spice Cayenne reaches Beta status with acceleration snapshots, Key-based deletion vectors, and Amazon S3 Express One Zone support. DataFusion has been upgraded to v51 along with Arrow v57.2, and iceberg-rust v0.8.0. v1.11 adds several DynamoDB & DynamoDB Streams improvements such as JSON nesting, and adds significant improvements to Distributed Query with active-active schedulers and mTLS for enterprise-grade high-availability and secure cluster communication.

This release also adds new SMB, NFS, and ScyllaDB Data Connectors (Alpha), Prepared Statements with full SDK support (gospice, spice-rs, spice-dotnet, spice-java, spice.js, and spicepy), Google LLM Support for expanded AI inference capabilities, and significant improvements to caching, observability, and Hash Indexing for Arrow Acceleration.

What's New in v1.11.0

Spice Cayenne Accelerator Reaches Beta

Spice Cayenne has been promoted to Beta status with acceleration snapshots support and numerous performance and stability improvements.

Key Enhancements:

  • Key-based Deletion Vectors: Improved deletion vector support using key-based lookups for more efficient data management and faster delete operations. Key-based deletion vectors are more memory-efficient than positional vectors for sparse deletions.
  • S3 Express One Zone Support: Store Cayenne data files in S3 Express One Zone for single-digit millisecond latency, ideal for latency-sensitive query workloads that require persistence.

Improved Reliability:

  • Resolved FuturesUnordered reentrant drop crashes
  • Fixed memory growth issues related to Vortex metrics allocation
  • Metadata catalog now properly respects cayenne_file_path location
  • Added warnings for unparseable configuration values

For more details, refer to the Cayenne Documentation.

DataFusion v51 Upgrade

Apache DataFusion has been upgraded to v51, bringing significant performance improvements, new SQL features, and enhanced observability.

DataFusion v51 ClickBench Performance

Performance Improvements:

  • Faster CASE Expression Evaluation: Expressions now short-circuit earlier, reuse partial results, and avoid unnecessary scattering, speeding up common ETL patterns
  • Better Defaults for Remote Parquet Reads: DataFusion now fetches the last 512KB of Parquet files by default, typically avoiding 2 I/O requests per file
  • Faster Parquet Metadata Parsing: Leverages Arrow 57's new thrift metadata parser for up to 4x faster metadata parsing

New SQL Features:

  • SQL Pipe Operators: Support for |> syntax for inline transforms
  • DESCRIBE <query>: Returns the schema of any query without executing it
  • Named Arguments in SQL Functions: PostgreSQL-style param => value syntax for scalar, aggregate, and window functions
  • Decimal32/Decimal64 Support: New Arrow types supported including aggregations like SUM, AVG, and MIN/MAX

Example pipe operator:

SELECT * FROM t
|> WHERE a > 10
|> ORDER BY b
|> LIMIT 5;

Improved Observability:

  • Improved EXPLAIN ANALYZE Metrics: New metrics including output_bytes, selectivity for filters, reduction_factor for aggregates, and detailed timing breakdowns

Arrow 57.2 Upgrade

Apache Arrow has been upgraded to v57.2, bringing major performance improvements and new capabilities.

Arrow 57 Parquet Metadata Parsing Performance

Key Features:

  • 4x Faster Parquet Metadata Parsing: A rewritten thrift metadata parser delivers up to 4x faster metadata parsing, especially beneficial for low-latency use cases and files with large amounts of metadata
  • Parquet Variant Support: Experimental support for reading and writing the new Parquet Variant type for semi-structured data, including shredded variant values
  • Parquet Geometry Support: Read and write support for Parquet Geometry types (GEOMETRY and GEOGRAPHY) with GeospatialStatistics
  • New arrow-avro Crate: Efficient conversion between Apache Avro and Arrow RecordBatches with projection pushdown and vectorized execution support

DynamoDB Connector Enhancements

  • Added JSON nesting for DynamoDB Streams
  • Improved batch deletion handling

Distributed Query Improvements

High Availability Clusters: Spice now supports running multiple active schedulers in an active/active configuration for production deployments. This eliminates the scheduler as a single point of failure and enables graceful handling of node failures.

  • Multiple schedulers run simultaneously, each capable of accepting queries
  • Schedulers coordinate via a shared S3-compatible object store
  • Executors discover all schedulers automatically
  • A load balancer distributes client queries across schedulers

Example HA configuration:

runtime:
scheduler:
state_location: s3://my-bucket/spice-cluster
params:
region: us-east-1

mTLS Verification: Cluster communication between scheduler and executors now supports mutual TLS verification for enhanced security.

Credential Propagation: S3, ABFS, and GCS credentials are now automatically propagated to executors in cluster mode, enabling access to cloud storage across the distributed query cluster.

Improved Resilience:

  • Exponential backoff for scheduler disconnection recovery
  • Increased gRPC message size limit from 16MB to 100MB for large query plans
  • HTTP health endpoint for cluster executors
  • Automatic executor role inference when --scheduler-address is provided

For more details, refer to the Distributed Query Documentation.

iceberg-rust v0.8.0 Upgrade

Spice has been upgraded to iceberg-rust v0.8.0, bringing improved Iceberg table support.

Key Features:

  • V3 Metadata Support: Full support for Iceberg V3 table metadata format
  • INSERT INTO Partitioned Tables: DataFusion integration now supports inserting data into partitioned Iceberg tables
  • Improved Delete File Handling: Better support for position and equality delete files, including shared delete file loading and caching
  • SQL Catalog Updates: Implement update_table and register_table for SQL catalog
  • S3 Tables Catalog: Implement update_table for S3 Tables catalog
  • Enhanced Arrow Integration: Convert Arrow schema to Iceberg schema with auto-assigned field IDs, _file column support, and Date32 type support

Acceleration Snapshots

Acceleration snapshots enable point-in-time recovery and data versioning for accelerated datasets. Snapshots capture the state of accelerated data at specific points, allowing for fast bootstrap recovery and rollback capabilities.

Key Features:

  • Flexible Triggers: Configure when snapshots are created based on time intervals or stream batch counts
  • Automatic Compaction: Reduce storage overhead by compacting older snapshots (DuckDB only)
  • Bootstrap Integration: Snapshots can reset cache expiry on load for seamless recovery (DuckDB with Caching refresh mode)
  • Smart Creation Policies: Only create snapshots when data has actually changed

Example configuration:

datasets:
- from: s3://my-bucket/data.parquet
name: my_dataset
acceleration:
enabled: true
engine: cayenne
mode: file
snapshots: enabled
snapshots_trigger: time_interval
snapshots_trigger_threshold: 1h
snapshots_creation_policy: on_changed

Snapshots API and CLI: New API endpoints and CLI commands for managing snapshots programmatically.

CLI Commands:

# List all snapshots for a dataset
spice acceleration snapshots taxi_trips

# Get details of a specific snapshot
spice acceleration snapshot taxi_trips 3

# Set the current snapshot for rollback (requires runtime restart)
spice acceleration set-snapshot taxi_trips 2

HTTP API Endpoints:

MethodEndpointDescription
GET/v1/datasets/{dataset}/acceleration/snapshotsList all snapshots for a dataset
GET/v1/datasets/{dataset}/acceleration/snapshots/{id}Get details of a specific snapshot
POST/v1/datasets/{dataset}/acceleration/snapshots/currentSet the current snapshot for rollback

For more details, refer to the Acceleration Snapshots Documentation.

Caching Acceleration Mode Improvements

The Caching Acceleration Mode introduced in v1.10.0 has received significant performance optimizations and reliability fixes in this release.

Performance Optimizations:

  • Non-blocking Cache Writes: Cache misses no longer block query responses. Data is written to the cache asynchronously after the query returns, reducing query latency for cache miss scenarios.
  • Batch Cache Writes: Multiple cache entries are now written in batches rather than individually, significantly improving write throughput for high-volume cache operations.

Reliability Fixes:

  • Correct SWR Refresh Behavior: The stale-while-revalidate (SWR) pattern now correctly refreshes only the specific entries that were accessed instead of refreshing all stale rows in the dataset. This prevents unnecessary source queries and reduces load on upstream data sources.
  • Deduplicated Refresh Requests: Fixed an issue where JSON array responses could trigger multiple redundant refresh operations. Refresh requests are now properly deduplicated.
  • Fixed Cache Hit Detection: Resolved an issue where queries that didn't include fetched_at in their projection would always result in cache misses, even when cached data was available.
  • Unfiltered Query Optimization: SELECT * queries without filters now return cached data directly without unnecessary filtering overhead.

For more details, refer to the Caching Acceleration Mode Documentation.

Prepared Statements

Improved Query Performance and Security: Spice now supports prepared statements, enabling parameterized queries that improve both performance through query plan caching and security by preventing SQL injection attacks.

Key Features:

  • Query Plan Caching: Prepared statements cache query plans, reducing planning overhead for repeated queries
  • SQL Injection Prevention: Parameters are safely bound, preventing SQL injection vulnerabilities
  • Arrow Flight SQL Support: Full prepared statement support via Arrow Flight SQL protocol

SDK Support:

SDKSupportMin VersionMethod
gospice (Go)✅ Fullv8.0.0+SqlWithParams() with typed constructors (Int32Param, StringParam, TimestampParam, etc.)
spice-rs (Rust)✅ Fullv3.0.0+query_with_params() with RecordBatch parameters
spice-dotnet (.NET)✅ Fullv0.3.0+QueryWithParams() with typed parameter builders
spice-java (Java)✅ Fullv0.5.0+queryWithParams() with typed Param constructors (Param.int64(), Param.string(), etc.)
spice.js (JavaScript)✅ Fullv3.1.0+query() with parameterized query support
spicepy (Python)✅ Fullv3.1.0+query() with parameterized query support

Example (Go):

import "github.com/spiceai/gospice/v8"

client, _ := spice.NewClient()
defer client.Close()

// Parameterized query with typed parameters
results, _ := client.SqlWithParams(ctx,
"SELECT * FROM products WHERE price > $1 AND category = $2",
spice.Float64Param(10.0),
spice.StringParam("electronics"),
)

Example (Java):

import ai.spice.SpiceClient;
import ai.spice.Param;
import org.apache.arrow.adbc.core.ArrowReader;

try (SpiceClient client = new SpiceClient()) {
// With automatic type inference
ArrowReader reader = client.queryWithParams(
"SELECT * FROM products WHERE price > $1 AND category = $2",
10.0, "electronics");

// With explicit typed parameters
ArrowReader reader = client.queryWithParams(
"SELECT * FROM products WHERE price > $1 AND category = $2",
Param.float64(10.0),
Param.string("electronics"));
}

For more details, refer to the Parameterized Queries Documentation.

Spice Java SDK v0.5.0

Parameterized Query Support for Java: The Spice Java SDK v0.5.0 introduces parameterized queries using ADBC (Arrow Database Connectivity), providing a safer and more efficient way to execute queries with dynamic parameters.

Key Features:

  • SQL Injection Prevention: Parameters are safely bound, preventing SQL injection vulnerabilities
  • Automatic Type Inference: Java types are automatically mapped to Arrow types (e.g., doubleFloat64, StringUtf8)
  • Explicit Type Control: Use the new Param class with typed factory methods (Param.int64(), Param.string(), Param.decimal128(), etc.) for precise control over Arrow types
  • Updated Dependencies: Apache Arrow Flight SQL upgraded to 18.3.0, plus new ADBC driver support

Example:

import ai.spice.SpiceClient;
import ai.spice.Param;

try (SpiceClient client = new SpiceClient()) {
// With automatic type inference
ArrowReader reader = client.queryWithParams(
"SELECT * FROM taxi_trips WHERE trip_distance > $1 LIMIT 10",
5.0);

// With explicit typed parameters for precise control
ArrowReader reader = client.queryWithParams(
"SELECT * FROM orders WHERE order_id = $1 AND amount >= $2",
Param.int64(12345),
Param.decimal128(new BigDecimal("99.99"), 10, 2));
}

Maven:

<dependency>
<groupId>ai.spice</groupId>
<artifactId>spiceai</artifactId>
<version>0.5.0</version>
</dependency>

For more details, refer to the Spice Java SDK Repository.

Google LLM Support

Expanded AI Provider Support: Spice now supports Google embedding and chat models via the Google AI provider, expanding the available LLM options for AI inference workloads alongside existing providers like OpenAI, Anthropic, and AWS Bedrock.

Key Features:

  • Google Chat Models: Access Google's Gemini models for chat completions
  • Google Embeddings: Generate embeddings using Google's text embedding models
  • Unified API: Use the same OpenAI-compatible API endpoints for all LLM providers

Example spicepod.yaml configuration:

models:
- from: google:gemini-2.0-flash
name: gemini
params:
google_api_key: ${secrets:GOOGLE_API_KEY}

embeddings:
- from: google:text-embedding-004
name: google_embeddings
params:
google_api_key: ${secrets:GOOGLE_API_KEY}

For more details, refer to the Google LLM Documentation (see docs PR #1286).

URL Tables

Query data sources directly via URL in SQL without prior dataset registration. Supports S3, Azure Blob Storage, and HTTP/HTTPS URLs with automatic format detection and partition inference.

Supported Patterns:

  • Single files: SELECT * FROM 's3://bucket/data.parquet'
  • Directories/prefixes: SELECT * FROM 's3://bucket/data/'
  • Glob patterns: SELECT * FROM 's3://bucket/year=*/month=*/data.parquet'

Key Features:

  • Automatic file format detection (Parquet, CSV, JSON, etc.)
  • Hive-style partition inference with filter pushdown
  • Schema inference from files
  • Works with both SQL and DataFrame APIs

Example with hive partitioning:

-- Partitions are automatically inferred from paths
SELECT * FROM 's3://bucket/data/' WHERE year = '2024' AND month = '01'

Enable via spicepod.yml:

runtime:
params:
url_tables: enabled

Cluster Mode Async Query APIs (experimental)

New asynchronous query APIs for long-running queries in cluster mode:

  • /v1/queries endpoint: Submit queries and retrieve results asynchronously

OpenTelemetry Improvements

Unified Telemetry Endpoint: OTel metrics ingestion has been consolidated to the Flight port (50051), simplifying deployment by removing the separate OTel port (50052). The push-based metrics exporter continues to support integration with OpenTelemetry collectors.

Note: This is a breaking change. Update your configurations if you were using the dedicated OTel port 50052. Internal cluster communication now uses port 50052 exclusively.

Observability Improvements

Enhanced Dashboards: Updated Grafana and Datadog example dashboards with:

  • Snapshot monitoring widgets
  • Improved accelerated datasets section
  • Renamed ingestion lag charts for clarity

Additional Histogram Buckets: Added more buckets to histogram metrics for better latency distribution visibility.

For more details, refer to the Monitoring Documentation.

Hash Indexing for Arrow Acceleration (experimental)

Arrow-based accelerations now support hash indexing for faster point lookups on equality predicates. Hash indexes provide O(1) average-case lookup performance for columns with high cardinality.

Features:

  • Primary key hash index support
  • Secondary index support for non-primary key columns
  • Composite key support with proper null value handling

Example configuration:

datasets:
- from: postgres:users
name: users
acceleration:
enabled: true
engine: arrow
primary_key: user_id
indexes:
'(tenant_id, user_id)': unique # Composite hash index

For more details, refer to the Hash Index Documentation.

SMB and NFS Data Connectors

Network-Attached Storage Connectors: New data connectors for SMB (Server Message Block) and NFS (Network File System) protocols enable direct federated queries against network-attached storage without requiring data movement to cloud object stores.

Key Features:

  • SMB Protocol Support: Connect to Windows file shares and Samba servers with authentication support
  • NFS Protocol Support: Connect to Unix/Linux NFS exports for direct data access
  • Federated Queries: Query Parquet, CSV, JSON, and other file formats directly from network storage with full SQL support
  • Acceleration Support: Accelerate data from SMB/NFS sources using DuckDB, Spice Cayenne, or other accelerators

Example spicepod.yaml configuration:

datasets:
# SMB share
- from: smb://fileserver/share/data.parquet
name: smb_data
params:
smb_username: ${secrets:SMB_USER}
smb_password: ${secrets:SMB_PASS}

# NFS export
- from: nfs://nfsserver/export/data.parquet
name: nfs_data

For more details, refer to the Data Connectors Documentation.

ScyllaDB Data Connector

A new data connector for ScyllaDB, the high-performance NoSQL database compatible with Apache Cassandra. Query ScyllaDB tables directly or accelerate them for faster analytics.

Example configuration:

datasets:
- from: scylladb:my_keyspace.my_table
name: scylla_data
acceleration:
enabled: true
engine: duckdb

For more details, refer to the ScyllaDB Data Connector Documentation.

Flight SQL TLS Connection Fixes

TLS Connection Support: Fixed TLS connection issues when using grpc+tls:// scheme with Flight SQL endpoints. Added support for custom CA certificate files via the new flightsql_tls_ca_certificate_file parameter.

Developer Experience Improvements

  • Turso v0.3.2 Upgrade: Upgraded Turso accelerator for improved performance and reliability
  • Rust 1.91 Upgrade: Updated to Rust 1.91 for latest language features and performance improvements
  • Spice Cloud CLI: Added spice cloud CLI commands for cloud deployment management
  • Improved Spicepod Schema: Improved JSON schema generation for better IDE support and validation
  • Acceleration Snapshots: Added configurable snapshots_create_interval for periodic acceleration snapshots independent of refresh cycles
  • Tiered Caching with Localpod: The Localpod connector now supports caching refresh mode, enabling multi-layer acceleration where a persistent cache feeds a fast in-memory cache
  • GitHub Data Connector: Added workflows and workflow runs support for GitHub repositories
  • NDJSON/LDJSON Support: Added support for Newline Delimited JSON and Line Delimited JSON file formats

Additional Improvements & Bug Fixes

  • Model Listing: New functionality to list available models across multiple AI providers
  • DuckDB Partitioned Tables: Primary key constraints now supported in partitioned DuckDB table mode
  • Post-refresh Sorting: New on_refresh_sort_columns parameter for DuckDB enables data ordering after writes
  • Improved Install Scripts: Removed jq dependency and improved cross-platform compatibility
  • Better Error Messages: Improved error messaging for bucket UDF arguments and deprecated OpenAI parameters
  • Reliability: Fixed DynamoDB IAM role authentication with new dynamodb_auth: iam_role parameter
  • Reliability: Fixed cluster executors to use scheduler's temp_directory parameter for shuffle files
  • Reliability: Initialize secrets before object stores in cluster executor mode
  • Reliability: Added page-level retry with backoff for transient GitHub GraphQL errors
  • Performance: Improved statistics for rewritten DistributeFileScanOptimizer plans
  • Developer Experience: Added max_message_size configuration for Flight service

Contributors

Breaking Changes

OTel Ingestion Port Change

OTel ingestion has been moved to the Flight port (50051), removing the separate OTel port 50052. Port 50052 is now used exclusively for internal cluster communication. Update your configurations if you were using the dedicated OTel port.

Distributed Query Cluster Mode Requires mTLS

Distributed query cluster mode now requires mTLS for secure communication between cluster nodes. This is a security enhancement to prevent unauthorized nodes from joining the cluster and accessing secrets.

Migration Steps:

  1. Generate certificates using spice cluster tls init and spice cluster tls add
  2. Update scheduler and executor startup commands with --node-mtls-* arguments
  3. For development/testing, use --allow-insecure-connections to opt out of mTLS

Renamed CLI Arguments:

Old NameNew Name
--cluster-mode--role
--cluster-ca-certificate-file--node-mtls-ca-certificate-file
--cluster-certificate-file--node-mtls-certificate-file
--cluster-key-file--node-mtls-key-file
--cluster-address--node-bind-address
--cluster-advertise-address--node-advertise-address
--cluster-scheduler-url--scheduler-address

Removed CLI Arguments:

  • --cluster-api-key: Replaced by mTLS authentication

Cookbook Updates

New ScyllaDB Data Connector Recipe: New recipe demonstrating how to use the ScyllaDB Data Connector. See ScyllaDB Data Connector Recipe for details.

New SMB Data Connector Recipe: New recipe demonstrating how to use the SMB Data Connector. See SMB Data Connector Recipe for details.

The Spice Cookbook includes 86 recipes to help you get started with Spice quickly and easily.

Upgrading

To upgrade to v1.11.0, use one of the following methods:

CLI:

spice upgrade

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.11.0 image:

docker pull spiceai/spiceai:1.11.0

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai --version 1.11.0

AWS Marketplace:

Spice is available in the AWS Marketplace.

Dependencies

What's Changed

Changelog

Spice v1.11.0-rc.2 (Jan 22, 2026)

· 24 min read
Viktor Yershov
Senior Software Engineer at Spice AI

Announcing the release of Spice v1.11.0-rc.2!

v1.11.0-rc.2 is the second release candidate for advanced test of v1.11. It brings Spice Cayenne to Beta status with acceleration snapshots support, a new ScyllaDB Data Connector, upgrades to DataFusion v51, Arrow 57.2, and iceberg-rust v0.8.0. It includes significant improvements to distributed query, caching, and observability.

What's New in v1.11.0-rc.2

Spice Cayenne Accelerator Reaches Beta

Spice Cayenne has been promoted to Beta status with acceleration snapshots support and numerous stability improvements.

Improved Reliability:

  • Fixed timezone database issues in Docker images that caused acceleration panics
  • Resolved FuturesUnordered reentrant drop crashes
  • Fixed memory growth issues related to Vortex metrics allocation
  • Metadata catalog now properly respects cayenne_file_path location
  • Added warnings for unparseable configuration values

Example configuration with snapshots:

datasets:
- from: s3://my-bucket/data.parquet
name: my_dataset
acceleration:
enabled: true
engine: cayenne
mode: file

DataFusion v51 Upgrade

Apache DataFusion has been upgraded to v51, bringing significant performance improvements, new SQL features, and enhanced observability.

DataFusion v51 ClickBench Performance

Performance Improvements:

  • Faster CASE Expression Evaluation: Expressions now short-circuit earlier, reuse partial results, and avoid unnecessary scattering, speeding up common ETL patterns
  • Better Defaults for Remote Parquet Reads: DataFusion now fetches the last 512KB of Parquet files by default, typically avoiding 2 I/O requests per file
  • Faster Parquet Metadata Parsing: Leverages Arrow 57's new thrift metadata parser for up to 4x faster metadata parsing

New SQL Features:

  • SQL Pipe Operators: Support for |> syntax for inline transforms
  • DESCRIBE <query>: Returns the schema of any query without executing it
  • Named Arguments in SQL Functions: PostgreSQL-style param => value syntax for scalar, aggregate, and window functions
  • Decimal32/Decimal64 Support: New Arrow types supported including aggregations like SUM, AVG, and MIN/MAX

Example pipe operator:

SELECT * FROM t
|> WHERE a > 10
|> ORDER BY b
|> LIMIT 5;

Improved Observability:

  • Improved EXPLAIN ANALYZE Metrics: New metrics including output_bytes, selectivity for filters, reduction_factor for aggregates, and detailed timing breakdowns

Arrow 57.2 Upgrade

Spice has been upgraded to Apache Arrow Rust 57.2.0, bringing major performance improvements and new capabilities.

Arrow 57 Parquet Metadata Parsing Performance

Key Features:

  • 4x Faster Parquet Metadata Parsing: A rewritten thrift metadata parser delivers up to 4x faster metadata parsing, especially beneficial for low-latency use cases and files with large amounts of metadata
  • Parquet Variant Support: Experimental support for reading and writing the new Parquet Variant type for semi-structured data, including shredded variant values
  • Parquet Geometry Support: Read and write support for Parquet Geometry types (GEOMETRY and GEOGRAPHY) with GeospatialStatistics
  • New arrow-avro Crate: Efficient conversion between Apache Avro and Arrow RecordBatches with projection pushdown and vectorized execution support

iceberg-rust v0.8.0 Upgrade

Spice has been upgraded to iceberg-rust v0.8.0, bringing improved Iceberg table support.

Key Features:

  • V3 Metadata Support: Full support for Iceberg V3 table metadata format
  • INSERT INTO Partitioned Tables: DataFusion integration now supports inserting data into partitioned Iceberg tables
  • Improved Delete File Handling: Better support for position and equality delete files, including shared delete file loading and caching
  • SQL Catalog Updates: Implement update_table and register_table for SQL catalog
  • S3 Tables Catalog: Implement update_table for S3 Tables catalog
  • Enhanced Arrow Integration: Convert Arrow schema to Iceberg schema with auto-assigned field IDs, _file column support, and Date32 type support

Acceleration Snapshots

Acceleration snapshots enable point-in-time recovery and data versioning for accelerated datasets. Snapshots capture the state of accelerated data at specific points, allowing for fast bootstrap recovery and rollback capabilities.

Key Feature Improvements in v1.11:

  • Flexible Triggers: Configure when snapshots are created based on time intervals or stream batch counts
  • Automatic Compaction: Reduce storage overhead by compacting older snapshots (DuckDB only)
  • Bootstrap Integration: Snapshots can reset cache expiry on load for seamless recovery (DuckDB with Caching refresh mode)
  • Smart Creation Policies: Only create snapshots when data has actually changed

Example configuration:

datasets:
- from: s3://my-bucket/data.parquet
name: my_dataset
acceleration:
enabled: true
engine: cayenne
mode: file
snapshots: enabled
snapshots_trigger: time_interval
snapshots_trigger_threshold: 1h
snapshots_creation_policy: on_changed

Snapshots API and CLI: New API endpoints and CLI commands for managing snapshots programmatically. List, create, and restore snapshots directly from the command line or via HTTP.

For more details, refer to the Acceleration Snapshots Documentation.

ScyllaDB Data Connector

A new data connector for ScyllaDB, the high-performance NoSQL database compatible with Apache Cassandra. Query ScyllaDB tables directly or accelerate them for faster analytics.

Example configuration:

datasets:
- from: scylladb:my_keyspace.my_table
name: scylla_data
acceleration:
enabled: true
engine: duckdb

For more details, refer to the ScyllaDB Data Connector Documentation.

Distributed Query Improvements

mTLS Verification: Cluster communication between scheduler and executors now supports mutual TLS verification for enhanced security.

Credential Propagation: Azure and GCS credentials are now automatically propagated to executors in cluster mode, enabling access to cloud storage across the distributed query cluster.

Improved Resilience:

  • Exponential backoff for scheduler disconnection recovery
  • Increased gRPC message size limit from 16MB to 100MB for large query plans
  • HTTP health endpoint for cluster executors
  • Automatic executor role inference when --scheduler-address is provided

For more details, refer to the Distributed Query Documentation.

Caching Acceleration Mode Improvements

The Caching Acceleration Mode introduced in v1.10.0 has received significant performance optimizations and reliability fixes in this release.

Performance Optimizations:

  • Non-blocking Cache Writes: Cache misses no longer block query responses. Data is written to the cache asynchronously after the query returns, reducing query latency for cache miss scenarios.
  • Batch Cache Writes: Multiple cache entries are now written in batches rather than individually, significantly improving write throughput for high-volume cache operations.

Reliability Fixes:

  • Correct SWR Refresh Behavior: The stale-while-revalidate (SWR) pattern now correctly refreshes only the specific entries that were accessed instead of refreshing all stale rows in the dataset. This prevents unnecessary source queries and reduces load on upstream data sources.
  • Deduplicated Refresh Requests: Fixed an issue where JSON array responses could trigger multiple redundant refresh operations. Refresh requests are now properly deduplicated.
  • Fixed Cache Hit Detection: Resolved an issue where queries that didn't include fetched_at in their projection would always result in cache misses, even when cached data was available.
  • Unfiltered Query Optimization: SELECT * queries without filters now return cached data directly without unnecessary filtering overhead.

For more details, refer to the Caching Acceleration Mode Documentation.

DynamoDB Connector Enhancements

  • Added JSON nesting for DynamoDB Streams
  • Proper batch deletion handling

URL Tables

Query data sources directly via URL in SQL without prior dataset registration. Supports S3, Azure Blob Storage, and HTTP/HTTPS URLs with automatic format detection and partition inference.

Supported Patterns:

  • Single files: SELECT * FROM 's3://bucket/data.parquet'
  • Directories/prefixes: SELECT * FROM 's3://bucket/data/'
  • Glob patterns: SELECT * FROM 's3://bucket/year=*/month=*/data.parquet'

Key Features:

  • Automatic file format detection (Parquet, CSV, JSON, etc.)
  • Hive-style partition inference with filter pushdown
  • Schema inference from files
  • Works with both SQL and DataFrame APIs

Example with hive partitioning:

-- Partitions are automatically inferred from paths
SELECT * FROM 's3://bucket/data/' WHERE year = '2024' AND month = '01'

Enable via spicepod.yml:

runtime:
params:
url_tables: enabled

Cluster Mode Async Query APIs (experimental)

New asynchronous query APIs for long-running queries in cluster mode:

  • /v1/queries endpoint: Submit queries and retrieve results asynchronously
  • Arrow Flight async support: Non-blocking query execution via Arrow Flight protocol

Observability Improvements

Enhanced Dashboards: Updated Grafana and Datadog example dashboards with:

  • Snapshot monitoring widgets
  • Improved accelerated datasets section
  • Renamed ingestion lag charts for clarity

Additional Histogram Buckets: Added more buckets to histogram metrics for better latency distribution visibility.

For more details, refer to the Monitoring Documentation.

Additional Improvements

  • Model Listing: New functionality to list available models across multiple AI providers
  • DuckDB Partitioned Tables: Primary key constraints now supported in partitioned DuckDB table mode
  • Post-refresh Sorting: New on_refresh_sort_columns parameter for DuckDB enables data ordering after writes
  • Improved Install Scripts: Removed jq dependency and improved cross-platform compatibility
  • Better Error Messages: Improved error messaging for bucket UDF arguments and deprecated OpenAI parameters

Contributors

Breaking Changes

No breaking changes.

Cookbook Updates

New ScyllaDB Data Connector Recipe: New recipe demonstrating how to use ScyllaDB Data Connector. See ScyllaDB Data Connector Recipe for details.

New SMB Data Connector Recipe: New recipe demonstrating how to use ScyllaDB Data Connector. See SMB Data Connector Recipe for details.

The Spice Cookbook includes 86 recipes to help you get started with Spice quickly and easily.

Upgrading

To upgrade to v1.11.0-rc.2, use one of the following methods:

CLI:

spice upgrade

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:v1.11.0-rc.2 image:

docker pull spiceai/spiceai:v1.11.0-rc.2

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai

AWS Marketplace:

Spice is available in the AWS Marketplace.

Dependencies

Changelog

Spice v1.11.0-rc.1 (Jan 6, 2026)

· 17 min read
Evgenii Khramkov
Senior Software Engineer at Spice AI

Announcing the release of Spice v1.11.0-rc.1!

v1.11.0-rc.1 is the first release candidate for early testing of v1.11 features including Distributed Query with mTLS for enterprise-grade secure cluster communication, new SMB and NFS Data Connectors for direct network-attached storage access, Prepared Statements for improved query performance and security, Cayenne Accelerator Enhancements with Key-based deletion vectors and Amazon S3 Express One Zone support, Google LLM Support for expanded AI inference capabilities, and Spice Java SDK v0.5.0 with parameterized query support.

What's New in v1.11.0-rc.1

Distributed Query with mTLS

Enterprise-Grade Secure Cluster Communication: Distributed query cluster mode now enables mutual TLS (mTLS) by default for secure communication between schedulers and executors. Internal cluster communication includes highly privileged RPC calls like fetching Spicepod configuration and expanding secrets. mTLS ensures only authenticated nodes can join the cluster and access sensitive data.

Key Features:

  • Mutual TLS Authentication: All executor-to-scheduler and executor-to-executor gRPC connections on the internal cluster port (50052) are secured with mTLS, securing communication, and preventing unauthorized nodes from joining the cluster
  • Certificate Management CLI: New developer spice cluster tls init and spice cluster tls add commands for generating CA certificates and node certificates with proper SANs (Subject Alternative Names)
  • Simplified CLI Arguments: Renamed cluster arguments for clarity (--role, --scheduler-address, --node-mtls-*) with --scheduler-address implying --role executor
  • Port Separation: Public services (Flight queries, HTTP API, Prometheus metrics) remain on ports 50051, 8090, and 9090 respectively, while internal cluster services (SchedulerGrpcServer, ClusterService) are isolated on port 50052 with mTLS enforced
  • Development Mode: Use --allow-insecure-connections flag to disable mTLS requirement for local development and testing

Quick Start:

# Generate certificates for development
spice cluster tls init
spice cluster tls add scheduler1
spice cluster tls add executor1

# Start scheduler
spiced --role scheduler \
--node-mtls-ca-certificate-file ca.crt \
--node-mtls-certificate-file scheduler1.crt \
--node-mtls-key-file scheduler1.key

# Start executor
spiced --role executor \
--scheduler-address https://scheduler1:50052 \
--node-mtls-ca-certificate-file ca.crt \
--node-mtls-certificate-file executor1.crt \
--node-mtls-key-file executor1.key

For more details, refer to the Distributed Query Documentation.

SMB and NFS Data Connectors

Network-Attached Storage Connectors: New data connectors for SMB (Server Message Block) and NFS (Network File System) protocols enable direct federated queries against network-attached storage without requiring data movement to cloud object stores.

Key Features:

  • SMB Protocol Support: Connect to Windows file shares and Samba servers with authentication support
  • NFS Protocol Support: Connect to Unix/Linux NFS exports for direct data access
  • Federated Queries: Query Parquet, CSV, JSON, and other file formats directly from network storage with full SQL support
  • Acceleration Support: Accelerate data from SMB/NFS sources using DuckDB, Spice Cayenne, or other accelerators

Example spicepod.yaml configuration:

datasets:
# SMB share
- from: smb://fileserver/share/data.parquet
name: smb_data
params:
smb_username: ${secrets:SMB_USER}
smb_password: ${secrets:SMB_PASS}

# NFS export
- from: nfs://nfsserver/export/data.parquet
name: nfs_data

For more details, refer to the Data Connectors Documentation.

Prepared Statements

Improved Query Performance and Security: Spice now supports prepared statements, enabling parameterized queries that improve both performance through query plan caching and security by preventing SQL injection attacks.

Key Features:

  • Query Plan Caching: Prepared statements cache query plans, reducing planning overhead for repeated queries
  • SQL Injection Prevention: Parameters are safely bound, preventing SQL injection vulnerabilities
  • Arrow Flight SQL Support: Full prepared statement support via Arrow Flight SQL protocol

SDK Support:

SDKSupportMin VersionMethod
gospice (Go)✅ Fullv8.0.0+SqlWithParams() with typed constructors (Int32Param, StringParam, TimestampParam, etc.)
spice-rs (Rust)✅ Fullv3.0.0+query_with_params() with RecordBatch parameters
spice-dotnet (.NET)❌ Not yet-Coming soon
spice-java (Java)✅ Fullv0.5.0+queryWithParams() with typed Param constructors (Param.int64(), Param.string(), etc.)
spice.js (JavaScript)❌ Not yet-Coming soon
spicepy (Python)❌ Not yet-Coming soon

Example (Go):

import "github.com/spiceai/gospice/v8"

client, _ := spice.NewClient()
defer client.Close()

// Parameterized query with typed parameters
results, _ := client.SqlWithParams(ctx,
"SELECT * FROM products WHERE price > $1 AND category = $2",
spice.Float64Param(10.0),
spice.StringParam("electronics"),
)

Example (Java):

import ai.spice.SpiceClient;
import ai.spice.Param;
import org.apache.arrow.adbc.core.ArrowReader;

try (SpiceClient client = new SpiceClient()) {
// With automatic type inference
ArrowReader reader = client.queryWithParams(
"SELECT * FROM products WHERE price > $1 AND category = $2",
10.0, "electronics");

// With explicit typed parameters
ArrowReader reader = client.queryWithParams(
"SELECT * FROM products WHERE price > $1 AND category = $2",
Param.float64(10.0),
Param.string("electronics"));
}

For more details, refer to the Parameterized Queries Documentation.

Spice Cayenne Accelerator Enhancements

The Spice Cayenne data accelerator has been improved with several key enhancements:

  • KeyBased Deletion Vectors: Improved deletion vector support using key-based lookups for more efficient data management and faster delete operations. KeyBased deletion vectors are more memory-efficient than positional vectors for sparse deletions.
  • S3 Express One Zone Support: Store Cayenne data files in S3 Express One Zone for single-digit millisecond latency, ideal for latency-sensitive query workloads that require persistence.

Example spicepod.yaml configuration:

datasets:
- from: s3://my-bucket/data.parquet
name: fast_data
acceleration:
enabled: true
engine: cayenne
mode: file
params:
# Use S3 Express One Zone for data files
cayenne_s3express_bucket: my-express-bucket--usw2-az1--x-s3

For more details, refer to the Cayenne Documentation.

Google LLM Support

Expanded AI Provider Support: Spice now supports Google embedding and chat models via the Google AI provider, expanding the available LLM options for AI inference workloads alongside existing providers like OpenAI, Anthropic, and AWS Bedrock.

Key Features:

  • Google Chat Models: Access Google's Gemini models for chat completions
  • Google Embeddings: Generate embeddings using Google's text embedding models
  • Unified API: Use the same OpenAI-compatible API endpoints for all LLM providers

Example spicepod.yaml configuration:

models:
- from: google:gemini-2.0-flash
name: gemini
params:
google_api_key: ${secrets:GOOGLE_API_KEY}

embeddings:
- from: google:text-embedding-004
name: google_embeddings
params:
google_api_key: ${secrets:GOOGLE_API_KEY}

For more details, refer to the Google LLM Documentation (see docs PR #1286).

Spice Java SDK v0.5.0

Parameterized Query Support for Java: The Spice Java SDK v0.5.0 introduces parameterized queries using ADBC (Arrow Database Connectivity), providing a safer and more efficient way to execute queries with dynamic parameters.

Key Features:

  • SQL Injection Prevention: Parameters are safely bound, preventing SQL injection vulnerabilities
  • Automatic Type Inference: Java types are automatically mapped to Arrow types (e.g., doubleFloat64, StringUtf8)
  • Explicit Type Control: Use the new Param class with typed factory methods (Param.int64(), Param.string(), Param.decimal128(), etc.) for precise control over Arrow types
  • Updated Dependencies: Apache Arrow Flight SQL upgraded to 18.3.0, plus new ADBC driver support

Example:

import ai.spice.SpiceClient;
import ai.spice.Param;

try (SpiceClient client = new SpiceClient()) {
// With automatic type inference
ArrowReader reader = client.queryWithParams(
"SELECT * FROM taxi_trips WHERE trip_distance > $1 LIMIT 10",
5.0);

// With explicit typed parameters for precise control
ArrowReader reader = client.queryWithParams(
"SELECT * FROM orders WHERE order_id = $1 AND amount >= $2",
Param.int64(12345),
Param.decimal128(new BigDecimal("99.99"), 10, 2));
}

Maven:

<dependency>
<groupId>ai.spice</groupId>
<artifactId>spiceai</artifactId>
<version>0.5.0</version>
</dependency>

For more details, refer to the Spice Java SDK Repository.

OpenTelemetry Improvements

Unified Telemetry Endpoint: OTel metrics ingestion has been consolidated to the Flight port (50051), simplifying deployment by removing the separate OTel port (50052). The push-based metrics exporter continues to support integration with OpenTelemetry collectors.

Note: This is a breaking change. Update your configurations if you were using the dedicated OTel port 50052. Internal cluster communication now uses port 50052 exclusively.

Developer Experience Improvements

  • Turso v0.3.2 Upgrade: Upgraded Turso accelerator for improved performance and reliability
  • Rust 1.91 Upgrade: Updated to Rust 1.91 for latest language features and performance improvements
  • Spice Cloud CLI: Added spice cloud CLI commands for cloud deployment management
  • Improved Spicepod Schema: Enhanced JSON schema generation for better IDE support and validation
  • Acceleration Snapshots: Added configurable snapshots_create_interval for periodic acceleration snapshots independent of refresh cycles
  • Tiered Caching with Localpod: The Localpod connector now supports caching refresh mode, enabling multi-layer acceleration where a persistent cache feeds a fast in-memory cache
  • GitHub Data Connector: Added workflows and workflow runs support for GitHub repositories
  • NDJSON/LDJSON Support: Added support for Newline Delimited JSON and Line Delimited JSON file formats

Additional Improvements & Bug Fixes

  • Reliability: Fixed DynamoDB IAM role authentication with new dynamodb_auth: iam_role parameter
  • Reliability: Fixed cluster executors to use scheduler's temp_directory parameter for shuffle files
  • Reliability: Initialize secrets before object stores in cluster executor mode
  • Reliability: Added page-level retry with backoff for transient GitHub GraphQL errors
  • Performance: Improved statistics for rewritten DistributeFileScanOptimizer plans
  • Developer Experience: Added max_message_size configuration for Flight service

Contributors

Breaking Changes

OTel Ingestion Port Change

OTel ingestion has been moved to the Flight port (50051), removing the separate OTel port 50052. Port 50052 is now used exclusively for internal cluster communication. Update your configurations if you were using the dedicated OTel port.

Distributed Query Cluster Mode Requires mTLS

Distributed query cluster mode now requires mTLS for secure communication between cluster nodes. This is a security enhancement to prevent unauthorized nodes from joining the cluster and accessing secrets.

Migration Steps:

  1. Generate certificates using spice cluster tls init and spice cluster tls add
  2. Update scheduler and executor startup commands with --node-mtls-* arguments
  3. For development/testing, use --allow-insecure-connections to opt out of mTLS

Renamed CLI Arguments:

Old NameNew Name
--cluster-mode--role
--cluster-ca-certificate-file--node-mtls-ca-certificate-file
--cluster-certificate-file--node-mtls-certificate-file
--cluster-key-file--node-mtls-key-file
--cluster-address--node-bind-address
--cluster-advertise-address--node-advertise-address
--cluster-scheduler-url--scheduler-address

Removed CLI Arguments:

  • --cluster-api-key: Replaced by mTLS authentication

Cookbook Updates

No major cookbook updates.

The Spice Cookbook includes 84 recipes to help you get started with Spice quickly and easily.

Upgrading

To try v1.11.0-rc.1, use one of the following methods:

CLI:

spice upgrade --version 1.11.0-rc.1

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.11.0-rc.1 image:

docker pull spiceai/spiceai:1.11.0-rc.1

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai --version 1.11.0-rc.1

AWS Marketplace:

🎉 Spice is available in the AWS Marketplace!

What's Changed

Changelog

Spice v1.10.0 (Dec 9, 2025)

· 18 min read
William Croxson
Senior Software Engineer at Spice AI

Announcing the release of Spice v1.10.0! ⚡

Spice v1.10.0 introduces a new Caching Acceleration Mode with stale-while-revalidate (SWR) semantics for disk-persisted, low-latency queries with background refresh. This release also adds the TinyLFU eviction policy for the SQL results cache, a preview of the DynamoDB Streams connector for real-time CDC, S3 location predicate pruning for faster partitioned queries, improved distributed query execution, and multiple security hardening improvements.

What's New in v1.10.0

Caching Acceleration Mode

Low-Latency Queries with Background Refresh: This release introduces a new caching acceleration mode that implements the stale-while-revalidate (SWR) pattern. Queries return cached results immediately while data refreshes asynchronously in the background, eliminating query latency spikes during refresh cycles. Cached data persists to disk using DuckDB, SQLite, or Cayenne file modes.

Key Features:

  • Stale-While-Revalidate (SWR): Returns cached data immediately while refreshing in the background, reducing query latency
  • Disk Persistence: Cached results persist across restarts using DuckDB, SQLite, or Cayenne file modes
  • Configurable Refresh: Control refresh intervals with refresh_check_interval to balance freshness and source load

Recommendation: Use retention configuration with caching acceleration to ensure stale data is cleaned up over time.

Example spicepod.yaml configuration:

datasets:
- from: http://localhost:7400
name: cached_data
time_column: fetched_at
acceleration:
enabled: true
engine: duckdb
mode: file # Persist cache to disk
refresh_mode: caching
refresh_check_interval: 10m
retention_check_enabled: true
retention_period: 24h
retention_check_interval: 1h

For more details, refer to the Data Acceleration Documentation.

TinyLFU Cache Eviction Policy

Higher Cache Hit Rates for SQL Results Cache: A new TinyLFU cache eviction policy is now available for the SQL results cache. TinyLFU is a probabilistic cache admission policy that maintains higher hit rates than LRU while keeping memory usage predictable, making it ideal for workloads with varying query frequency patterns.

Example spicepod.yaml configuration:

runtime:
caching:
sql_results:
enabled: true
eviction_policy: tiny_lfu # default: lru

For more details, refer to the Caching Documentation and the Moka TinyLFU Documentation for details of the algorithm.

DynamoDB Streams Data Connector (Preview)

Real-Time Change Data Capture for DynamoDB: The DynamoDB connector now integrates with DynamoDB Streams for real-time change data capture (CDC). This enables continuous synchronization of DynamoDB table changes into Spice for real-time query, search, and LLM-inference.

Key Features:

  • Real-Time CDC: Automatically captures inserts, updates, and deletes from DynamoDB tables as they occur
  • Table Bootstrapping: Performs an initial full table scan before streaming changes, ensuring complete data consistency
  • Acceleration Integration: Works with refresh_mode: changes to incrementally update accelerated datasets

Note: DynamoDB Streams must be enabled on your DynamoDB table. This feature is in preview.

Example spicepod.yaml configuration:

datasets:
- from: dynamodb:my_table
name: orders_stream
acceleration:
enabled: true
refresh_mode: changes # Enable Streams capture

For more details, refer to the DynamoDB Connector Documentation.

OpenTelemetry Metrics Exporter

Spice can now push metrics to an OpenTelemetry collector, enabling integration with platforms such as Jaeger, New Relic, Honeycomb, and other OpenTelemetry-compatible backends.

Key Features:

  • Protocol Support: Supports the gRPC (default port 4317) protocol
  • Configurable Push Interval: Control how frequently metrics are pushed to the collector

Example spicepod.yaml configuration for gRPC:

runtime:
telemetry:
enabled: true
otel_exporter:
endpoint: 'localhost:4317'
push_interval: '30s'

For more details, refer to the Observability & Monitoring Documentation.

S3 Connector Improvements

S3 Location Predicate Pruning: The S3 data connector now supports location-based predicate pruning, dramatically reducing data scanned by pushing down location filter predicates to S3 listing operations. For partitioned datasets (e.g., year=2025/month=12/), Spice now skips listing irrelevant partitions entirely, significantly reducing query latency and S3 API costs.

AWS S3 Tables Write Support: Full read/write capability for AWS S3 Tables, enabling direct integration with AWS's managed table format for S3. Use standard SQL INSERT INTO to write data.

For more details, refer to the S3 Data Connector Documentation and Glue Data Connector Documentation.

Faster Distributed Query Execution

Distributed query planning and execution have been significantly improved:

  • Fixed executor registration in cluster mode for more reliable distributed deployments
  • Improved hostname resolution for Flight server binding, enabling better executor discovery
  • Distributed accelerator registration: Data accelerators now properly register in distributed mode
  • Optimized query planning: DistributeFileScanOptimizer improvements for faster planning with large datasets

For more details, refer to the Distributed Query Documentation.

Search Improvements

Search capabilities have been improved with several performance and reliability enhancements:

  • Fixed FTS query blocking: Full-text search queries no longer block unnecessarily, improving query responsiveness
  • Optimized vector index operations: Eliminated unnecessary list_vectors calls for better performance
  • Improved limit pushdown: IndexerExec now properly handles limit pushdown for more efficient searches

For more details, refer to the Search Documentation.

Security Hardening

Multiple security improvements have been implemented:

  • SQL Identifier Quoting: Hardened SQL identifier quoting across all database connectors (PostgreSQL, MySQL, DuckDB, etc.) to prevent SQL injection attacks through table or column names
  • Token Redaction: Sensitive authentication tokens are now fully redacted in debug and error output, preventing accidental credential exposure in logs
  • Path Traversal Prevention: Fixed tar extraction operations to prevent directory traversal vulnerabilities when processing archived files
  • Input Sanitization: Added strict validation for top_n_sample order_by clause parsing to prevent injection attacks
  • Glue Credential Handling: Prevented automatic loading of AWS credentials from environment in Glue connector, ensuring explicit credential configuration

Developer Experience Improvements

  • Health probe metrics: Added health probe latency metrics for better observability
  • CLI improvements: Fixed .clear history command in the REPL to fully clear persisted history

Contributors

Breaking Changes

No breaking changes.

Cookbook Updates

No major cookbook updates.

The Spice Cookbook includes 82 recipes to help you get started with Spice quickly and easily.

Upgrading

To upgrade to v1.10.0, use one of the following methods:

CLI:

spice upgrade

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.10.0 image:

docker pull spiceai/spiceai:1.10.0

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai

AWS Marketplace:

🎉 Spice is now available in the AWS Marketplace!

What's Changed

Changelog

Spice v1.10.0-rc.1 (Dec 2, 2025)

· 11 min read
David Stancu
Principal Software Engineer at Spice AI

Announcing the release of Spice v1.10.0-rc.1! ⚡

v1.10.0-rc1 is a release candidate for early testing of v1.10 features including an all new caching acceleration mode, tiny_lfu caching policy, a new DynamoDB Streams connector (Preview), improvements to the DynamoDB connector, faster distributed query execution, S3 connector improvements, and security hardening for v1.10.0-stable.

What's New in v1.10.0-rc1

Caching Acceleration Mode with SWR and TinyLFU

This release introduces a new caching acceleration mode that implements the stale-while-revalidate (SWR) pattern using Data Accelerators such as DuckDB or Cayenne, enabling queries to return file-persisted cached results immediately while asynchronously refreshing data in the background. Combined with the new TinyLFU cache eviction policy, Spice can now maintain higher cache hit rates while keeping memory usage predictable.

Key Features:

  • Stale-While-Revalidate (SWR): Returns cached data immediately while refreshing in the background
  • Data Accelerator Support: Cached accelerators can persist data to disk using DuckDB, SQLite, or Cayenne file modes.
  • TinyLFU Cache Policy: Probabilistic cache admission policy that maintains high hit rates with minimal overhead
  • Predictable Memory Usage: Configurable memory limits with automatic eviction of less frequently used entries

Example Spicepod.yml configuration:

runtime:
caching:
sql_results:
enabled: true
eviction_policy: tiny_lfu # default lru

datasets:
- from: s3://my-bucket/data.parquet
name: cached_data
acceleration:
enabled: true
engine: duckdb
mode: file # Persist cache to disk
refresh_mode: caching
refresh_check_interval: 10m

For more details, refer to the Data Acceleration Documentation and Caching Documentation.

DynamoDB Streams Data Connector in Preview

DynamoDB Connector now integrates with DynamoDB Streams which enables real-time streaming with support for both table bootstrapping and continuous change data capture (CDC). This connector automatically detects changes in DynamoDB tables and streams them into Spice for real-time query, search, and LLM-inference.

Key Features:

  • Real-Time CDC: Automatically captures inserts, updates, and deletes from DynamoDB tables
  • Table Bootstrapping: Initial full table load before streaming changes

Example Spicepod.yml configuration:

datasets:
- from: dynamodb:my_table
name: orders_stream
acceleration:
enabled: true
refresh_mode: changes

For more details, refer to the DynamoDB Connector Documentation.

Cayenne Accelerator Enhancements

The Cayenne data accelerator now supports:

  • Sort Columns Configuration: Optimize inserts by pre-sorting data on specified columns for improved query performance

Example Spicepod.yml configuration:

datasets:
- from: s3://my-bucket/data.parquet
name: sorted_data
acceleration:
enabled: true
engine: cayenne
mode: file_create
params:
sort_columns: timestamp,region

For more details, refer to the Cayenne Documentation.

S3 Connector Improvements

S3 Location Predicate Pruning: The S3 data connector now supports location-based predicate pruning, dramatically reducing data scanned by pushing down predicates to S3 listing operations. This optimization is especially effective for partitioned datasets stored in S3.

AWS S3 Tables Write Support: Full read/write capability for AWS S3 Tables, enabling fast integration with AWS's table format for S3.

For more details, refer to the S3 Tables Data Connector Documentation and Glue Data Connection Documentation.

Faster Distributed Query Execution

Distributed query planning and execution have been significantly improved:

  • Fixed executor registration in cluster mode for more reliable distributed deployments
  • Improved hostname resolution for Flight server binding, enabling better executor discovery
  • Distributed accelerator registration: Data accelerators now properly register in distributed mode
  • Optimized query planning: DistributeFileScanOptimizer improvements for faster planning with large datasets

For more details, refer to the Distributed Query Documentation.

Search Improvements

Search capabilities have been improved with several performance and reliability enhancements:

  • Fixed FTS query blocking: Full-text search queries no longer block unnecessarily, improving query responsiveness
  • Optimized vector index operations: Eliminated unnecessary list_vectors calls for better performance
  • Improved limit pushdown: IndexerExec now properly handles limit pushdown for more efficient searches

For more details, refer to the Search Documentation.

Security Hardening

Multiple security improvements have been implemented:

  • SQL identifier quoting: Hardened SQL identifier quoting across all connectors to prevent injection attacks
  • Token redaction: Sensitive tokens are now fully redacted in debug output to prevent credential leakage
  • Path traversal prevention: Fixed tar extraction to prevent path traversal vulnerabilities
  • Input sanitization: Added validation for top_n_sample order_by parsing
  • Improved credential handling: Improved credential management in Glue connector

Developer Experience Improvements

  • Health probe metrics: Added health probe latency metrics for better observability
  • CLI improvements: Fixed .clear history command in the REPL to fully clear persisted history

Contributors

Breaking Changes

No breaking changes.

Cookbook Updates

No major cookbook updates. The Spice Cookbook still offers 82+ recipes to help you prototype quickly.

Upgrading

To try v1.10.0-rc1, use one of the following methods:

CLI:

spice upgrade --version 1.10.0-rc1

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.10.0-rc1 image:

docker pull spiceai/spiceai:1.10.0-rc1

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai --version 1.10.0-rc1

AWS Marketplace:

🎉 Spice is available in the AWS Marketplace.

What's Changed

Changelog

Spice v1.9.0 (Nov 19, 2025)

· 59 min read
Phillip LeBlanc
Co-Founder and CTO of Spice AI

Announcing the release of Spice v1.9.0-stable! 🌶

v1.9.0-stable introduces Spice Cayenne, a new high-performance data accelerator built on the Vortex columnar format that delivers better than DuckDB performance without single-file scaling limitations, and a preview of Multi-Node Distributed Query based on Apache Ballista. v1.9.0 also upgrades to DataFusion v50, DuckDB v1.4.2, and Delta-Kernel v0.16 for even higher query performance, expands search capabilities with full-text search on views and multi-column embeddings, and delivers many additional features and improvements.

What's New in v1.9.0

Cayenne Data Accelerator (Beta)

Introducing Cayenne: SQL as an Acceleration Format: A new high-performance Data Accelerator that simplifies multi-file data acceleration by using an embedded database (SQLite) for metadata while storing data in the Vortex columnar format, a Linux Foundation project. Cayenne delivers query and ingestion performance better than DuckDB's file-based acceleration without DuckDB's memory overhead and the scaling challenges of single DuckDB files.

Cayenne uses SQLite to manage acceleration metadata (schemas, snapshots, statistics, file tracking) through simple SQL transactions, while storing data in Vortex's compressed columnar format. This architecture provides:

Key Features:

  • SQLite + Vortex Architecture: All metadata is stored in SQLite tables with standard SQL transactions, while data lives in Vortex's compressed, chunked columnar format designed for zero-copy access and efficient scanning.
  • Simplified Operations: No complex file hierarchies, no JSON/Avro metadata files, no separate catalog servers—just SQL tables and Vortex data files. The entire metadata schema is intentionally simple for maximum reliability.
  • Fast Metadata Access: Single SQL query retrieves all metadata needed for query planning—no multiple round trips to storage, no S3 throttling, no reconstruction of metadata state from scattered files.
  • Efficient Small Changes: Dramatically reduces small file proliferation. Snapshots are just rows in SQLite tables, not new files on disk. Supports millions of snapshots without performance degradation.
  • High Concurrency: Changes consist of two steps: stage Vortex files (if any), then run a single SQL transaction. Much faster conflict resolution and support for many more concurrent updates than file-based formats.
  • Advanced Data Lifecycle: Full ACID transactions, delete support, and retention SQL execution on refresh commit.

Example Spicepod.yml configuration:

datasets:
- from: s3:my_table
name: accelerated_data_30d
acceleration:
enabled: true
engine: cayenne
mode: file
refresh_mode: append
retention_sql: DELETE FROM accelerated_data WHERE created_at < NOW() - INTERVAL '30 days'

Note, the Cayenne Data Accelerator is in Beta with limitations.

For more details, refer to the Cayenne Documentation, the Vortex project, and the DuckLake announcement that partly inspired this design.

Multi-Node Distributed Query (Preview)

Apache Ballista Integration: Spice now supports distributed query execution based on Apache Ballista, enabling distributed queries across multiple executor nodes for improved performance on large datasets. This feature is in preview in v1.9.0.

Architecture:

A distributed Spice cluster consists of:

  • Scheduler: Responsible for distributed query planning and work queue management for the executor fleet
  • Executors: One or more nodes responsible for running physical query plans

Getting Started:

Start a scheduler instance using an existing Spicepod. The scheduler is the only spiced instance that needs to be configured:

# Start scheduler (note the flight bind address override if you want it reachable outside localhost)
spiced --cluster-mode scheduler --flight 0.0.0.0:50051

Start one or more executors configured with the scheduler's flight URI:

# Start executor (automatically selects a free port if 50051 is taken)
spiced --cluster-mode executor --scheduler-url spiced://localhost:50051

Query Execution:

Queries run through the scheduler will now show a distributed_plan in EXPLAIN output, demonstrating how the query is distributed across executor nodes:

EXPLAIN SELECT count(id) FROM my_dataset;

Current Limitations:

  • Accelerated datasets are currently not supported. This feature is designed for querying partitioned data lake formats (Parquet, Delta Lake, Iceberg, etc.)
  • The feature is in preview and may have stability or performance limitations
  • Specific acceleration support is planned for future releases

For more details, refer to the Distributed Query Documentation.

DataFusion v50 Upgrade

Spice.ai is built on the Apache DataFusion query engine. The v50 release brings significant performance improvements and enhanced reliability:

Performance Improvements 🚀:

  • Dynamic Filter Pushdown: Enhanced dynamic filter pushdown for custom ExecutionPlans, ensuring filters propagate correctly through all physical operators for improved query performance.

  • Partition Pruning: Expanded partition pruning support ensures that unnecessary partitions are skipped when filters are not used, reducing data scanning overhead and improving query execution times.

Apache Spark Compatible Functions: Added support for Spark-compatible functions including array, bit_get/bit_count, bitmap_count, crc32/sha1, date_add/date_sub, if, last_day, like/ilike, luhn_check, mod/pmod, next_day, parse_url, rint, and width_bucket.

Bug Fixes & Reliability: Resolved issues with partition name validation and empty execution plans when vector index lists are empty. Fixed timestamp support for partition expressions, enabling better partitioning for time-series data.

See the Apache DataFusion 50.0.3 Release for more details.

DuckDB v1.4.2 Upgrade and Accelerator Improvements

DuckDB v1.4.2: DuckDB has been upgraded to v1.4.2, which includes several performance optimizations.

Composite ART Index Support: DuckDB in Spice now supports composite (multi-column) Adaptive Radix Tree (ART) indexes for accelerated table scans. When queries filter on multiple columns fully covered by a composite index, the optimizer automatically uses index scans instead of full table scans, delivering significant performance improvements for selective queries.

Example configuration:

datasets:
- from: file://data.parquet
name: sales
acceleration:
enabled: true
engine: duckdb
indexes:
'(region, product_id)': enabled

Performance example with composite index on 7.5M rows:

SELECT * FROM sales WHERE region = 'US' AND product_id = 12345;

-- Without index: 0.282s
-- With composite index (region, product_id): 0.037s
-- Performance improvement: 7.6x faster with composite index

DuckDB Intermediate Materialization: Queries with indexes now use intermediate materialization (WITH ... AS MATERIALIZED) to leverage faster index scans. Currently supported for non-federated queries (query_federation: disabled) against a single table with indexes only. When predicates cover more columns than the index, the optimizer rewrites queries to first materialize index-filtered results, then apply remaining predicates. This optimization can deliver significant performance improvements for selective queries.

Example configuration:

datasets:
- from: file://sales_data.parquet
name: sales
acceleration:
enabled: true
engine: duckdb
mode: file
params:
query_federation: disabled # Required currently for intermediate materialization
indexes:
'(region, product_id)': enabled

Performance example:

-- Query with indexed columns (region, product_id) plus additional filter (amount)
SELECT * FROM sales
WHERE region = 'US' AND product_id = 12345 AND amount > 1000;

-- Optimized execution time: 0.031s (with intermediate materialization)
-- Standard execution time: 0.108s (without optimization)
-- Performance improvement: ~3.5x faster

The optimizer automatically rewrites the query to:

WITH _intermediate_materialize AS MATERIALIZED (
SELECT * FROM sales WHERE region = 'US' AND product_id = 12345
)
SELECT * FROM _intermediate_materialize WHERE amount > 1000;

Parquet Buffering for Partitioned Writes: DuckDB partitioned writes in table mode now support Parquet buffering, reducing memory usage and improving write performance for large datasets.

Retention SQL on Refresh Commit: DuckDB accelerations now support running retention SQL on refresh commit, enabling automatic data cleanup and lifecycle management during refresh operations.

UTC Timezone for DuckDB: DuckDB now uses UTC as the default timezone, ensuring consistent behavior for time-based queries across different environments.

Example Spicepod.yml configuration:

datasets:
- from: s3://my_bucket/large_table/
name: partitioned_data
acceleration:
enabled: true
engine: duckdb
mode: file
retention:
sql: DELETE FROM partitioned_data WHERE event_time < NOW() - INTERVAL '7 days'

For more details, refer to the DuckDB Data Accelerator Documentation.

HTTP Data Connector

  • Querying endpoints as tables: The HTTP/HTTPS Data Connectors now supports querying HTTP endpoints directly as tables in SQL queries with dynamic filters. This feature transforms REST APIs into queryable data sources, making it easy to integrate external service data.

  • Query HTTP endpoint that returns structured data (JSON, CSV, etc.) as if it were a database table

  • Configurable retry logic, timeouts, and POST request support for more complex API interactions

Example Spicepod.yml configuration:

datasets:
- from: https://api.tvmaze.com
name: tvmaze
params:
file_format: json
max_retries: 3
client_timeout: 10s
allowed_request_paths: /search/people
request_query_filters: enabled
request_body_filters: enabled

Example SQL query:

SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people' and request_query = 'q=michael'
LIMIT 10;

If a request_body is supplied it will be posted to the endpoint:

Example SQL query:

SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people' and request_query = 'q=michael' and request_body = '{"name": "michael"}'
LIMIT 10;

HTTP endpoints can be accelerated using refresh_sql:

datasets:
- from: https://api.tvmaze.com
name: tvmaze
params:
file_format: json
allowed_request_paths: /search/people
request_query_filters: enabled
request_body_filters: enabled
acceleration:
enabled: true
refresh_mode: full
refresh_sql: |
SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people'
AND request_query IN ('q=michael', 'q=luke')

For more details, refer to the HTTP Data Connector Documentation.

DynamoDB Data Connector Improvements

Improved Query Performance: The DynamoDB Data Connector now includes improved filter handling for edge cases, parallel scan support for faster data ingestion, and better error handling for misconfigured queries. These improvements enable more reliable and performant access to DynamoDB data.

Example Spicepod.yml configuration:

datasets:
- from: dynamodb:my_table
name: ddb_data
params:
scan_segments: 10 # Default `auto` which calculates optimal segments based on number of rows

For more details, refer to the DynamoDB Data Connector Documentation.

S3 Data Connector Improvements

S3 Versioning Support: Spice now supports S3 Versioning for all connectors using object-store (S3, Delta Lake, etc.), ensuring range reads over versioned files are atomically correct. When S3 versioning is enabled, Spice automatically tracks version IDs during file discovery and uses them for all subsequent range reads, preventing inconsistencies from concurrent file modifications.

Current limitations:

  • Multi-file connections (e.g., partitioned datasets) do not yet support version tracking across all files
  • Version tracking is automatic when S3 versioning is enabled on the bucket

S3 Single-File Refresh Skipping: Spice now optimizes S3 single-file dataset refreshes by caching file metadata (ETag, Version ID, size, timestamp) and skipping unnecessary data fetches when the underlying file hasn't changed. This optimization dramatically reduces bandwidth usage and improves refresh performance for scenarios where data doesn't change frequently. The feature is enabled by default for accelerated S3 single-file datasets and includes metrics tracking for skipped refreshes.

Example configuration:

datasets:
- from: s3://my-bucket/data.parquet
name: s3_data
acceleration:
enabled: true
engine: duckdb
refresh_check_interval: 10s

When the file's metadata hasn't changed between refresh checks, Spice will skip the data fetch entirely, logging:

Skipping refresh for dataset 's3_data': file metadata unchanged

For more details, refer to the S3 Data Connector Documentation.

Search & Embeddings Enhancements

Full-Text Search on Views: Full-text search indexes are now supported on views, enabling advanced search scenarios over pre-aggregated or transformed data. This extends the power of Spice's search capabilities beyond base datasets.

Multi-Column Embeddings on Views: Views now support embedding columns, enabling vector search and semantic retrieval on view data. This is useful for search over aggregated or joined datasets.

Vector Engines on Views: Vector search engines are now available for views, enabling similarity search over complex queries and transformations.

Example Spicepod.yml configuration:

views:
- name: aggregated_reviews
sql: SELECT review_id, review_text FROM reviews WHERE rating > 4
embeddings:
- column: review_text
model: openai:text-embedding-3-small

For more details, refer to the Search Documentation and Embeddings Documentation.

Dedicated Query Thread Pool (Now Enabled by Default)

Dedicated Query Thread Pool: Query execution and accelerated refreshes now run on their own dedicated thread pool, separate from the HTTP server. This prevents heavy query workloads from slowing down API responses, keeping health checks fast and avoiding unnecessary Kubernetes pod restarts under load.

This feature was opt-in in previous releases and is now enabled by default. To disable it and revert to the previous behavior, add the following spicepod.yaml configuration:

runtime:
params:
dedicated_thread_pool: none

For more details, refer to the Runtime Configuration Documentation.

Query Performance Optimizations

Stale-While-Revalidate Cache Control: Query results now support "stale-while-revalidate" cache control, allowing stale cached data to be served immediately while asynchronously refreshing the cache entry in the background. This improves response times for frequently-accessed queries while maintaining data freshness. Requires cache key type to be set to "sql (raw)" for proper operation.

Optimized Prepared Statements: Prepared statement handling has been optimized for better performance with parameterized queries, reducing planning overhead and improving execution time for repeated queries.

Large RecordBatch Chunking: Large Arrow RecordBatch objects are now automatically chunked to control memory usage during query execution, preventing memory exhaustion for queries returning large result sets.

Query Result Caching: Compressed Encoding, Stale-While-Revalidate Cache Control

Zstd Compression Encoding: Query result caching now supports optional Zstandard (zstd) compression encoding to reduce memory usage for cached query results. This is particularly beneficial for large result sets, reducing cache memory footprint while maintaining fast decompression times. Encoding can be configured via the encoding parameter with options none (default) or zstd.

Example configuration:

runtime:
caching:
sql_results:
enabled: true
max_size: 128MiB
item_ttl: 1m
encoding: zstd # Enable zstd compression

HTTP Cache-Control Support: The query result cache now supports the stale-while-revalidate Cache-Control directive, enabling faster response times by serving stale cached results immediately while asynchronously refreshing the cache in the background. This feature is particularly useful for applications that can tolerate slightly stale data in exchange for improved performance.

Example configuration:

runtime:
caching:
sql_results:
enabled: true
max_size: 128MiB
item_ttl: 1m
stale_while_revalidate_ttl: 1m # serve stale items for up to 1 minute after `item_ttl` expires

How it works:

When a cache entry is stale but within the stale-while-revalidate window, Spice will:

  1. Immediately return the stale cached result to the client
  2. Asynchronously re-execute the query in the background to refresh the cache
  3. Future requests will use the refreshed data

Configuration:

Use the Cache-Control HTTP header with the stale-while-revalidate directive:

Cache-Control: max-age=300, stale-while-revalidate=60

This configuration caches results for 5 minutes (300 seconds), and allows serving stale results for an additional 60 seconds while refreshing in the background.

Requirements:

  • Must use plan or raw SQL cache keys (set cache_key_type to sql or plan in results_caching configuration)
  • Background revalidation re-executes queries through the normal query path
  • Timestamp tracking automatically determines cache entry age for staleness checks

Example configuration via HTTP header:

GET /v1/sql
Cache-Control: max-age=600, stale-while-revalidate=120
X-Cache-Key-Type: sql

This feature improves application responsiveness while ensuring data freshness through background updates.

For more details, refer to the Results Caching Documentation.

Security & Reliability Improvements

Enhanced HTTP Client Security: HTTP client usage across the runtime has been hardened with improved TLS validation, certificate pinning for critical endpoints, and better error handling for network failures.

ODBC Connector Improvements: Removed unwrap calls from the ODBC connector, improving error handling and reliability. Fixed secret handling and Kubernetes secret integration.

CLI Permissions Hardening: Tightened file permissions for the CLI and install script, ensuring secure defaults for configuration files and credentials.

Oracle Instant Client Pinning: Oracle Instant Client downloads are now pinned to specific SHAs, ensuring reproducible builds and preventing supply chain attacks.

AWS Authentication Improvements

Improved Credential Retry Logic: AWS SDK credential initialization has been significantly improved with more robust retry logic and better error handling. The system now automatically retries transient credential resolution failures using Fibonacci backoff, allowing Spice to tolerate extended AWS outages (up to ~48 hours) without manual intervention.

Key features:

  • Automatic retry with backoff: Implements Fibonacci backoff for transient credential failures (network issues, temporary AWS service disruptions)
  • Better error handling: Distinguishes between retryable errors (connector errors) and non-retryable errors (misconfiguration)
  • Unauthenticated access support: Properly supports unauthenticated access to public S3 buckets without requiring credentials
  • Improved error messages: Provides detailed logging with attempt numbers, retry intervals, and error context for better troubleshooting

The improvements ensure more reliable AWS service integration, particularly in environments with intermittent network connectivity or during AWS service degradations.

Observability & Tracing

DataFusion Log Emission: The Spice runtime now emits DataFusion internal logs, providing deeper visibility into query planning and execution for debugging and performance analysis.

AI Completions Tracing: Fixed tracing so that ai_completions operations are correctly parented under sql_query traces, improving observability for AI-powered queries.

Git Data Connector (Alpha)

Version-Controlled Data Access: The new Git Data Connector (Alpha) enables querying datasets stored in Git repositories. This connector is ideal for use cases involving configuration files, documentation, or any data tracked in version control.

Example Spicepod.yml configuration:

datasets:
- from: git:https://github.com/myorg/myrepo
name: git_metrics
params:
file_format: csv

For more details, refer to the Git Data Connector Documentation.

Spice Java SDK 0.4.0

The Spice Java SDK has been upgraded with support for configurable Arrow memory limit: spice-java v0.4.0

SpiceClient client = SpiceClient.builder()
.withArrowMemoryLimitMB(1024) // 1GB limit
.build();

For more details, refer to the Java SDK Documentation.

CLI Improvements

Install Specific Versions: The spice install command now supports installing specific versions of the Spice runtime and CLI. This enables easy version management, downgrading, or installation of specific releases for testing or compatibility requirements.

Usage:

# Install a specific version
spice install v1.8.3

# Install a specific version with AI flavor
spice install v1.8.3 ai

# Install latest version (existing behavior)
spice install
spice install ai

Note: Homebrew installations require manual version management via brew install spiceai/spiceai/spice@<version>.

Persistent Query History: The Spice CLI REPL (SQL, search, and chat interfaces) now persists command history to ~/.spice/query_history.txt, making your query history available across sessions. The history file is automatically created if it doesn't exist, with graceful fallback if the home directory cannot be determined.

New REPL Commands:

  • .clear - Clear the screen using ANSI escape codes for a clean workspace
  • .clear history - Clear and persist the query history, removing all stored commands

Tab Completion: Tab completion now includes suggestions based on your command history, making it faster to re-run or modify previous queries.

Example usage:

sql> SELECT * FROM my_table;
sql> .clear # Clears the screen
sql> .clear history # Clears command history
sql> # Use arrow keys or tab to access previous commands

For more details, refer to the CLI Documentation.

Additional Improvements & Bug Fixes

  • Reliability: Fixed refresh worker panics with recovery handling to prevent runtime crashes during acceleration refreshes.
  • Reliability: Improved error messages for missing or invalid spicepod.yaml files, providing actionable feedback for misconfiguration.
  • Reliability: Fixed DuckDB metadata pointer loading issues for snapshots.
  • Performance: Ensured ListingTable partitions are pruned correctly when filters are not used.
  • Reliability: Fixed vector dimension determination for partitioned indexes.
  • Search: Fixed casing issues in Reciprocal Rank Fusion (RRF) for hybrid search queries.
  • Search: Fixed search field handling as metadata for chunked search indexes.
  • Validation: Added timestamp support for partition expressions.
  • Validation: Fixed regexp_match function for DuckDB datasets.
  • Validation: Fixed partition name validation for improved reliability.

Contributors

Breaking Changes

No breaking changes.

Cookbook Updates

New HTTP Data Connector Recipe: New recipe demonstrating how to query REST APIs and HTTP(s) endpoints. See HTTP Connector Recipe for details.

The Spice Cookbook includes 82 recipes to help you get started with Spice quickly and easily.

Upgrading

To upgrade to v1.9.0, use one of the following methods:

CLI:

spice upgrade

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.9.0 image:

docker pull spiceai/spiceai:1.9.0

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai

AWS Marketplace:

🎉 Spice is now available in the AWS Marketplace!

What's Changed

Dependencies

Changelog

Spice v1.9.0-rc.4 (Nov 18, 2025)

· 22 min read
Phillip LeBlanc
Co-Founder and CTO of Spice AI

Announcing the release of Spice v1.9.0-rc.4! 🌶

This release candidate brings DuckDB v1.4.2, Cayenne partitioning improvements, and comprehensive security hardening across the CLI, data connectors, runtime, and MCP. v1.9.0-rc.4 also includes MySQL and PostgreSQL connector improvements with fixed nullability inferences and full-text search support, DynamoDB consistency improvements, HTTP connector validation and UX enhancements, and numerous reliability and performance optimizations. Significant improvements were also made to test and automation infrastructure to ensure high quality releases.

v1.9.0 introduces Spice Cayenne, a new high-performance data accelerator built on the Vortex columnar format that delivers better than DuckDB performance without single-file scaling limitations, and a preview of Multi-Node Distributed Query based on Apache Ballista. v1.9.0 also upgrades to DataFusion v50 for even higher query performance, expands search capabilities with full-text search on views and multi-column embeddings, and delivers many additional features and improvements.

What's New in v1.9.0

Cayenne Data Accelerator (Beta)

Introducing Cayenne: SQL as an Acceleration Format: A new high-performance Data Accelerator that simplifies multi-file data acceleration by using an embedded database (SQLite) for metadata while storing data in the Vortex columnar format, a Linux Foundation project. Cayenne delivers query and ingestion performance better than DuckDB's file-based acceleration without DuckDB's memory overhead and the scaling challenges of single DuckDB files.

Cayenne uses SQLite to manage acceleration metadata (schemas, snapshots, statistics, file tracking) through simple SQL transactions, while storing data in Vortex's compressed columnar format. This architecture provides:

Key Features:

  • SQLite + Vortex Architecture: All metadata is stored in SQLite tables with standard SQL transactions, while data lives in Vortex's compressed, chunked columnar format designed for zero-copy access and efficient scanning.
  • Simplified Operations: No complex file hierarchies, no JSON/Avro metadata files, no separate catalog servers—just SQL tables and Vortex data files. The entire metadata schema is intentionally simple for maximum reliability.
  • Fast Metadata Access: Single SQL query retrieves all metadata needed for query planning—no multiple round trips to storage, no S3 throttling, no reconstruction of metadata state from scattered files.
  • Efficient Small Changes: Dramatically reduces small file proliferation. Snapshots are just rows in SQLite tables, not new files on disk. Supports millions of snapshots without performance degradation.
  • High Concurrency: Changes consist of two steps: stage Vortex files (if any), then run a single SQL transaction. Much faster conflict resolution and support for many more concurrent updates than file-based formats.
  • Advanced Data Lifecycle: Full ACID transactions, delete support, and retention SQL execution on refresh commit.

Example Spicepod.yml configuration:

datasets:
- from: s3:my_table
name: accelerated_data_30d
acceleration:
enabled: true
engine: cayenne
mode: file
refresh_mode: append
retention_sql: DELETE FROM accelerated_data WHERE created_at < NOW() - INTERVAL '30 days'

Note, the Cayenne Data Accelerator is in Beta with limitations.

For more details, refer to the Cayenne Documentation, the Vortex project, and the DuckLake announcement that partly inspired this design.

Multi-Node Distributed Query (Preview)

Apache Ballista Integration: Spice now supports distributed query execution based on Apache Ballista, enabling distributed queries across multiple executor nodes for improved performance on large datasets. This feature is in preview in v1.9.0-rc.3.

Architecture:

A distributed Spice cluster consists of:

  • Scheduler: Responsible for distributed query planning and work queue management for the executor fleet
  • Executors: One or more nodes responsible for running physical query plans

Getting Started:

Start a scheduler instance using an existing Spicepod. The scheduler is the only spiced instance that needs to be configured:

# Start scheduler (note the flight bind address override if you want it reachable outside localhost)
spiced --cluster-mode scheduler --flight 0.0.0.0:50051

Start one or more executors configured with the scheduler's flight URI:

# Start executor (automatically selects a free port if 50051 is taken)
spiced --cluster-mode executor --scheduler-url spiced://localhost:50051

Query Execution:

Queries run through the scheduler will now show a distributed_plan in EXPLAIN output, demonstrating how the query is distributed across executor nodes:

EXPLAIN SELECT count(id) FROM my_dataset;

Current Limitations:

  • Accelerated datasets are currently not supported. This feature is designed for querying partitioned data lake formats (Parquet, Delta Lake, Iceberg, etc.)
  • The feature is in preview and may have stability or performance limitations
  • Specific acceleration support is planned for future releases

DataFusion v50 Upgrade

Spice.ai is built on the Apache DataFusion query engine. The v50 release brings significant performance improvements and enhanced reliability:

Performance Improvements 🚀:

  • Dynamic Filter Pushdown: Enhanced dynamic filter pushdown for custom ExecutionPlans, ensuring filters propagate correctly through all physical operators for improved query performance.

  • Partition Pruning: Expanded partition pruning support ensures that unnecessary partitions are skipped when filters are not used, reducing data scanning overhead and improving query execution times.

Apache Spark Compatible Functions: Added support for Spark-compatible functions including array, bit_get/bit_count, bitmap_count, crc32/sha1, date_add/date_sub, if, last_day, like/ilike, luhn_check, mod/pmod, next_day, parse_url, rint, and width_bucket.

Bug Fixes & Reliability: Resolved issues with partition name validation and empty execution plans when vector index lists are empty. Fixed timestamp support for partition expressions, enabling better partitioning for time-series data.

See the Apache DataFusion 50.0.3 Release for more details.

DuckDB v1.4.2 Upgrade and Accelerator Improvements

DuckDB v1.4.2: DuckDB has been upgraded to v1.4.2, which includes several performance optimizations.

Composite ART Index Support: DuckDB in Spice now supports composite (multi-column) Adaptive Radix Tree (ART) indexes for accelerated table scans. When queries filter on multiple columns fully covered by a composite index, the optimizer automatically uses index scans instead of full table scans, delivering significant performance improvements for selective queries.

Example configuration:

datasets:
- from: file://data.parquet
name: sales
acceleration:
enabled: true
engine: duckdb
indexes:
'(region, product_id)': enabled

Performance example with composite index on 7.5M rows:

SELECT * FROM sales WHERE region = 'US' AND product_id = 12345;

-- Without index: 0.282s
-- With composite index (region, product_id): 0.037s
-- Performance improvement: 7.6x faster with composite index

DuckDB Intermediate Materialization: Queries with indexes now use intermediate materialization (WITH ... AS MATERIALIZED) to leverage faster index scans. Currently supported for non-federated queries (query_federation: disabled) against a single table with indexes only. When predicates cover more columns than the index, the optimizer rewrites queries to first materialize index-filtered results, then apply remaining predicates. This optimization can deliver significant performance improvements for selective queries.

Example configuration:

datasets:
- from: file://sales_data.parquet
name: sales
acceleration:
enabled: true
engine: duckdb
mode: file
params:
query_federation: disabled # Required currently for intermediate materialization
indexes:
'(region, product_id)': enabled

Performance example:

-- Query with indexed columns (region, product_id) plus additional filter (amount)
SELECT * FROM sales
WHERE region = 'US' AND product_id = 12345 AND amount > 1000;

-- Optimized execution time: 0.031s (with intermediate materialization)
-- Standard execution time: 0.108s (without optimization)
-- Performance improvement: ~3.5x faster

The optimizer automatically rewrites the query to:

WITH _intermediate_materialize AS MATERIALIZED (
SELECT * FROM sales WHERE region = 'US' AND product_id = 12345
)
SELECT * FROM _intermediate_materialize WHERE amount > 1000;

Parquet Buffering for Partitioned Writes: DuckDB partitioned writes in table mode now support Parquet buffering, reducing memory usage and improving write performance for large datasets.

Retention SQL on Refresh Commit: DuckDB accelerations now support running retention SQL on refresh commit, enabling automatic data cleanup and lifecycle management during refresh operations.

UTC Timezone for DuckDB: DuckDB now uses UTC as the default timezone, ensuring consistent behavior for time-based queries across different environments.

Example Spicepod.yml configuration:

datasets:
- from: s3://my_bucket/large_table/
name: partitioned_data
acceleration:
enabled: true
engine: duckdb
mode: file
retention:
sql: DELETE FROM partitioned_data WHERE event_time < NOW() - INTERVAL '7 days'

HTTP Data Connector

  • Querying endpoints as tables: The HTTP/HTTPS Data Connectors now supports querying HTTP endpoints directly as tables in SQL queries with dynamic filters. This feature transforms REST APIs into queryable data sources, making it easy to integrate external service data.

  • Query HTTP endpoint that returns structured data (JSON, CSV, etc.) as if it were a database table

  • Configurable retry logic, timeouts, and POST request support for more complex API interactions

Example Spicepod.yml configuration:

datasets:
- from: https://api.tvmaze.com
name: tvmaze
params:
file_format: json
max_retries: 3
client_timeout: 10s

Example SQL query:

SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people' and request_query = 'q=michael'
LIMIT 10;

If a request_body is supplied it will be posted to the endpoint:

Example SQL query:

SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people' and request_query = 'q=michael' and request_body = '{"name": "michael"}'
LIMIT 10;

HTTP endpoints can be accelerated using refresh_sql:

datasets:
- from: https://api.tvmaze.com
name: tvmaze
acceleration:
enabled: true
refresh_mode: full
refresh_sql: |
SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people'
AND request_query IN ('q=michael', 'q=luke')

DynamoDB Data Connector Improvements

Improved Query Performance: The DynamoDB Data Connector now includes improved filter handling for edge cases, parallel scan support for faster data ingestion, and better error handling for misconfigured queries. These improvements enable more reliable and performant access to DynamoDB data.

Example Spicepod.yml configuration:

datasets:
- from: dynamodb:my_table
name: ddb_data
params:
scan_segments: 10 # Default `auto` which calculates optimal segments based on number of rows

S3 Versioning Support

Atomic Range Reads for Versioned Files: Spice now supports S3 Versioning for all connectors using object-store (S3, Delta Lake, etc.), ensuring range reads over versioned files are atomically correct. When S3 versioning is enabled, Spice automatically tracks version IDs during file discovery and uses them for all subsequent range reads, preventing inconsistencies from concurrent file modifications.

Current limitations:

  • Multi-file connections (e.g., partitioned datasets) do not yet support version tracking across all files
  • Version tracking is automatic when S3 versioning is enabled on the bucket

Search & Embeddings Enhancements

Full-Text Search on Views: Full-text search indexes are now supported on views, enabling advanced search scenarios over pre-aggregated or transformed data. This extends the power of Spice's search capabilities beyond base datasets.

Multi-Column Embeddings on Views: Views now support embedding columns, enabling vector search and semantic retrieval on view data. This is useful for search over aggregated or joined datasets.

Vector Engines on Views: Vector search engines are now available for views, enabling similarity search over complex queries and transformations.

Example Spicepod.yml configuration:

views:
- name: aggregated_reviews
sql: SELECT review_id, review_text FROM reviews WHERE rating > 4
embeddings:
- column: review_text
model: openai:text-embedding-3-small

Dedicated Query Thread Pool (Now Enabled by Default)

Dedicated Query Thread Pool: Query execution and accelerated refreshes now run on their own dedicated thread pool, separate from the HTTP server. This prevents heavy query workloads from slowing down API responses, keeping health checks fast and avoiding unnecessary Kubernetes pod restarts under load.

This feature was opt-in in previous releases and is now enabled by default. To disable it and revert to the previous behavior, add the following spicepod.yaml configuration:

runtime:
params:
dedicated_thread_pool: none

Query Performance Optimizations

Stale-While-Revalidate Cache Control: Query results now support "stale-while-revalidate" cache control, allowing stale cached data to be served immediately while asynchronously refreshing the cache entry in the background. This improves response times for frequently-accessed queries while maintaining data freshness. Requires cache key type to be set to "sql (raw)" for proper operation.

Optimized Prepared Statements: Prepared statement handling has been optimized for better performance with parameterized queries, reducing planning overhead and improving execution time for repeated queries.

Large RecordBatch Chunking: Large Arrow RecordBatch objects are now automatically chunked to control memory usage during query execution, preventing memory exhaustion for queries returning large result sets.

Query Result Cache: Stale-While-Revalidate

HTTP Cache-Control Support: The query result cache now supports the stale-while-revalidate Cache-Control directive, enabling faster response times by serving stale cached results immediately while asynchronously refreshing the cache in the background. This feature is particularly useful for applications that can tolerate slightly stale data in exchange for improved performance.

How it works:

When a cache entry is stale but within the stale-while-revalidate window, Spice will:

  1. Immediately return the stale cached result to the client
  2. Asynchronously re-execute the query in the background to refresh the cache
  3. Future requests will use the refreshed data

Configuration:

Use the Cache-Control HTTP header with the stale-while-revalidate directive:

Cache-Control: max-age=300, stale-while-revalidate=60

This configuration caches results for 5 minutes (300 seconds), and allows serving stale results for an additional 60 seconds while refreshing in the background.

Requirements:

  • Must use plan or raw SQL cache keys (set cache_key_type to sql or plan in results_caching configuration)
  • Background revalidation re-executes queries through the normal query path
  • Timestamp tracking automatically determines cache entry age for staleness checks

Example configuration via HTTP header:

GET /v1/sql
Cache-Control: max-age=600, stale-while-revalidate=120
X-Cache-Key-Type: sql

This feature improves application responsiveness while ensuring data freshness through background updates.

Security & Reliability Improvements

Enhanced HTTP Client Security: HTTP client usage across the runtime has been hardened with improved TLS validation, certificate pinning for critical endpoints, and better error handling for network failures.

ODBC Connector Improvements: Removed unwrap calls from the ODBC connector, improving error handling and reliability. Fixed secret handling and Kubernetes secret integration.

CLI Permissions Hardening: Tightened file permissions for the CLI and install script, ensuring secure defaults for configuration files and credentials.

Oracle Instant Client Pinning: Oracle Instant Client downloads are now pinned to specific SHAs, ensuring reproducible builds and preventing supply chain attacks.

AWS Authentication Improvements

Improved Credential Retry Logic: AWS SDK credential initialization has been significantly improved with more robust retry logic and better error handling. The system now automatically retries transient credential resolution failures using Fibonacci backoff, allowing Spice to tolerate extended AWS outages (up to ~48 hours) without manual intervention.

Key features:

  • Automatic retry with backoff: Implements Fibonacci backoff for transient credential failures (network issues, temporary AWS service disruptions)
  • Configurable retry limits: Supports up to 300 retry attempts with a maximum retry interval of 600 seconds
  • Better error handling: Distinguishes between retryable errors (connector errors) and non-retryable errors (misconfiguration)
  • Unauthenticated access support: Properly supports unauthenticated access to public S3 buckets without requiring credentials
  • Improved error messages: Provides detailed logging with attempt numbers, retry intervals, and error context for better troubleshooting

The improvements ensure more reliable AWS service integration, particularly in environments with intermittent network connectivity or during AWS service degradations.

Observability & Tracing

DataFusion Log Emission: The Spice runtime now emits DataFusion internal logs, providing deeper visibility into query planning and execution for debugging and performance analysis.

AI Completions Tracing: Fixed tracing so that ai_completions operations are correctly parented under sql_query traces, improving observability for AI-powered queries.

Git Data Connector (Alpha)

Version-Controlled Data Access: The new Git Data Connector (Alpha) enables querying datasets stored in Git repositories. This connector is ideal for use cases involving configuration files, documentation, or any data tracked in version control.

Example Spicepod.yml configuration:

datasets:
- from: git:https://github.com/myorg/myrepo
name: git_metrics
params:
file_format: csv

For more details, refer to the Git Data Connector Documentation.

Spice Java SDK 0.4.0

The Spice Java SDK have been upgraded with support configurable Arrow memory limit: spice-java v0.4.0

SpiceClient client = SpiceClient.builder()
.withArrowMemoryLimitMB(1024) // 1GB limit
.build();

CLI Improvements

Install Specific Versions: The spice install command now supports installing specific versions of the Spice runtime and CLI. This enables easy version management, downgrading, or installation of specific releases for testing or compatibility requirements.

Usage:

# Install a specific version
spice install v1.8.3

# Install a specific version with AI flavor
spice install v1.8.3 ai

# Install latest version (existing behavior)
spice install
spice install ai

Note: Homebrew installations require manual version management via brew install spiceai/spiceai/spice@<version>.

Persistent Query History: The Spice CLI REPL (SQL, search, and chat interfaces) now persists command history to ~/.spice/query_history.txt, making your query history available across sessions. The history file is automatically created if it doesn't exist, with graceful fallback if the home directory cannot be determined.

New REPL Commands:

  • .clear - Clear the screen using ANSI escape codes for a clean workspace
  • .clear history - Clear and persist the query history, removing all stored commands

Tab Completion: Tab completion now includes suggestions based on your command history, making it faster to re-run or modify previous queries.

Example usage:

sql> SELECT * FROM my_table;
sql> .clear # Clears the screen
sql> .clear history # Clears command history
sql> # Use arrow keys or tab to access previous commands

Additional Improvements & Bug Fixes

  • Reliability: Fixed refresh worker panics with recovery handling to prevent runtime crashes during acceleration refreshes.
  • Reliability: Improved error messages for missing or invalid spicepod.yaml files, providing actionable feedback for misconfiguration.
  • Reliability: Fixed DuckDB metadata pointer loading issues for snapshots.
  • Performance: Ensured ListingTable partitions are pruned correctly when filters are not used.
  • Reliability: Fixed vector dimension determination for partitioned indexes.
  • Search: Fixed casing issues in Reciprocal Rank Fusion (RRF) for hybrid search queries.
  • Search: Fixed search field handling as metadata for chunked search indexes.
  • Validation: Added timestamp support for partition expressions.
  • Validation: Fixed regexp_match function for DuckDB datasets.
  • Validation: Fixed partition name validation for improved reliability.

Contributors

Breaking Changes

No breaking changes.

Cookbook Updates

New HTTP Data Connector Recipe: New recipe demonstrating how to query REST APIs and HTTP(s) endpoints. See HTTP Connector Recipe for details.

The Spice Cookbook includes 82 recipes to help you get started with Spice quickly and easily.

Upgrading

To upgrade to v1.9.0-rc.4, use one of the following methods:

CLI:

spice upgrade

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.9.0-rc.4 image:

docker pull spiceai/spiceai:1.9.0-rc.4

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai

AWS Marketplace:

🎉 Spice is now available in the AWS Marketplace!

What's Changed

Dependencies

Changelog (rc.4)

Spice v1.9.0-rc.2 (Nov 11, 2025)

· 32 min read
Sergei Grebnov
Senior Software Engineer at Spice AI

Announcing the release of Spice v1.9.0-rc.2! 🌶

This is the second release candidate for v1.9.0, which introduces Spice Cayenne, a new high-performance data accelerator built on the Vortex columnar format that delivers better than DuckDB performance without single-file scaling limitations and a preview of Multi-Node Distributed Query based on Apache Ballista. v1.9.0-rc.2 also upgrades to DataFusion v50 and DuckDB v1.4.1 for even higher query performance, expands search capabilities with full-text search on views and multi-column embeddings, includes significant DynamoDB and DuckDB accelerator improvements, expands the HTTP data connector to support endpoints as tables, and delivers many security and reliability improvements.

What's New in v1.9.0-rc.2

Cayenne Data Accelerator (Beta)

Introducing Cayenne: SQL as an Acceleration Format: A new high-performance Data Accelerator that simplifies multi-file data acceleration by using an embedded database (SQLite) for metadata while storing data in the Vortex columnar format, a Linux Foundation project. Cayenne delivers query and ingestion performance better than DuckDB's file-based acceleration without DuckDB's memory overhead and the scaling challenges of single DuckDB files.

Cayenne uses SQLite to manage acceleration metadata (schemas, snapshots, statistics, file tracking) through simple SQL transactions, while storing data in Vortex's compressed columnar format. This architecture provides:

Key Features:

  • SQLite + Vortex Architecture: All metadata is stored in SQLite tables with standard SQL transactions, while data lives in Vortex's compressed, chunked columnar format designed for zero-copy access and efficient scanning.
  • Simplified Operations: No complex file hierarchies, no JSON/Avro metadata files, no separate catalog servers—just SQL tables and Vortex data files. The entire metadata schema is intentionally simple for maximum reliability.
  • Fast Metadata Access: Single SQL query retrieves all metadata needed for query planning—no multiple round trips to storage, no S3 throttling, no reconstruction of metadata state from scattered files.
  • Efficient Small Changes: Dramatically reduces small file proliferation. Snapshots are just rows in SQLite tables, not new files on disk. Supports millions of snapshots without performance degradation.
  • High Concurrency: Changes consist of two steps: stage Vortex files (if any), then run a single SQL transaction. Much faster conflict resolution and support for many more concurrent updates than file-based formats.
  • Advanced Data Lifecycle: Full ACID transactions, delete support, and retention SQL execution on refresh commit.

Example Spicepod.yml configuration:

datasets:
- from: s3:my_table
name: accelerated_data_30d
acceleration:
enabled: true
engine: cayenne
mode: file
refresh_mode: append
retention_sql: DELETE FROM accelerated_data WHERE created_at < NOW() - INTERVAL '30 days'

Note, the Cayenne Data Accelerator is in Beta with limitations.

For more details, refer to the Cayenne Documentation, the Vortex project, and the DuckLake announcement that partly inspired this design.

Multi-Node Distributed Query (Preview)

Apache Ballista Integration: Spice now supports distributed query execution based on Apache Ballista, enabling distributed queries across multiple executor nodes for improved performance on large datasets. This feature is in preview in v1.9.0-rc.2.

Architecture:

A distributed Spice cluster consists of:

  • Scheduler: Responsible for distributed query planning and work queue management for the executor fleet
  • Executors: One or more nodes responsible for running physical query plans

Getting Started:

Start a scheduler instance using an existing Spicepod. The scheduler is the only spiced instance that needs to be configured:

# Start scheduler (note the flight bind address override if you want it reachable outside localhost)
spiced --cluster-mode scheduler --flight 0.0.0.0:50051

Start one or more executors configured with the scheduler's flight URI:

# Start executor (automatically selects a free port if 50051 is taken)
spiced --cluster-mode executor --scheduler-url spiced://localhost:50051

Query Execution:

Queries run through the scheduler will now show a distributed_plan in EXPLAIN output, demonstrating how the query is distributed across executor nodes:

EXPLAIN SELECT count(id) FROM my_dataset;

Current Limitations:

  • Accelerated datasets are currently not supported. This feature is designed for querying partitioned data lake formats (Parquet, Delta Lake, Iceberg, etc.)
  • The feature is in preview and may have stability or performance limitations
  • Specific acceleration support is planned for future releases

DataFusion v50 Upgrade

Spice.ai is built on the Apache DataFusion query engine. The v50 release brings significant performance improvements and enhanced reliability:

Performance Improvements 🚀:

  • Dynamic Filter Pushdown: Enhanced dynamic filter pushdown for custom ExecutionPlans, ensuring filters propagate correctly through all physical operators for improved query performance.

  • Partition Pruning: Expanded partition pruning support ensures that unnecessary partitions are skipped when filters are not used, reducing data scanning overhead and improving query execution times.

Apache Spark Compatible Functions: Added support for Spark-compatible functions including array, bit_get/bit_count, bitmap_count, crc32/sha1, date_add/date_sub, if, last_day, like/ilike, luhn_check, mod/pmod, next_day, parse_url, rint, and width_bucket.

Bug Fixes & Reliability: Resolved issues with partition name validation and empty execution plans when vector index lists are empty. Fixed timestamp support for partition expressions, enabling better partitioning for time-series data.

See the Apache DataFusion 50.0.0 Release for more details.

DuckDB v1.4.1 Upgrade and Accelerator Improvements

DuckDB v1.4.1: DuckDB has been upgraded to v1.4.1, which includes several performance optimizations.

Composite ART Index Support: DuckDB in Spice now supports composite (multi-column) Adaptive Radix Tree (ART) indexes for accelerated table scans. When queries filter on multiple columns fully covered by a composite index, the optimizer automatically uses index scans instead of full table scans, delivering significant performance improvements for selective queries.

Example configuration:

datasets:
- from: file://data.parquet
name: sales
acceleration:
enabled: true
engine: duckdb
indexes:
'(region, product_id)': enabled

Performance example with composite index on 7.5M rows:

SELECT * FROM sales WHERE region = 'US' AND product_id = 12345;

-- Without index: 0.282s
-- With composite index (region, product_id): 0.037s
-- Performance improvement: 7.6x faster with composite index

DuckDB Intermediate Materialization: Queries with indexes now use intermediate materialization (WITH ... AS MATERIALIZED) to leverage faster index scans. Currently supported for non-federated queries (query_federation: disabled) against a single table with indexes only. When predicates cover more columns than the index, the optimizer rewrites queries to first materialize index-filtered results, then apply remaining predicates. This optimization can deliver significant performance improvements for selective queries.

Example configuration:

datasets:
- from: file://sales_data.parquet
name: sales
acceleration:
enabled: true
engine: duckdb
mode: file
params:
query_federation: disabled # Required currently for intermediate materialization
indexes:
'(region, product_id)': enabled

Performance example:

-- Query with indexed columns (region, product_id) plus additional filter (amount)
SELECT * FROM sales
WHERE region = 'US' AND product_id = 12345 AND amount > 1000;

-- Optimized execution time: 0.031s (with intermediate materialization)
-- Standard execution time: 0.108s (without optimization)
-- Performance improvement: ~3.5x faster

The optimizer automatically rewrites the query to:

WITH _intermediate_materialize AS MATERIALIZED (
SELECT * FROM sales WHERE region = 'US' AND product_id = 12345
)
SELECT * FROM _intermediate_materialize WHERE amount > 1000;

Parquet Buffering for Partitioned Writes: DuckDB partitioned writes in table mode now support Parquet buffering, reducing memory usage and improving write performance for large datasets.

Retention SQL on Refresh Commit: DuckDB accelerations now support running retention SQL on refresh commit, enabling automatic data cleanup and lifecycle management during refresh operations.

UTC Timezone for DuckDB: DuckDB now uses UTC as the default timezone, ensuring consistent behavior for time-based queries across different environments.

Example Spicepod.yml configuration:

datasets:
- from: s3://my_bucket/large_table/
name: partitioned_data
acceleration:
enabled: true
engine: duckdb
mode: file
retention:
sql: DELETE FROM partitioned_data WHERE event_time < NOW() - INTERVAL '7 days'

HTTP Data Connector

  • Querying endpoints as tables: The HTTP/HTTPS Data Connectors now supports querying HTTP endpoints directly as tables in SQL queries with dynamic filters. This feature transforms REST APIs into queryable data sources, making it easy to integrate external service data.

  • Query HTTP endpoint that returns structured data (JSON, CSV, etc.) as if it were a database table

  • Configurable retry logic, timeouts, and POST request support for more complex API interactions

Example Spicepod.yml configuration:

datasets:
- from: https://api.tvmaze.com
name: tvmaze
params:
file_format: json
max_retries: 3
client_timeout: 10s

Example SQL query:

SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people' and request_query = 'q=michael'
LIMIT 10;

If a request_body is supplied it will be posted to the endpoint:

Example SQL query:

SELECT request_path, request_query, content
FROM tvmaze
WHERE request_path = '/search/people' and request_query = 'q=michael' and request_body = '{"name": "michael"}'
LIMIT 10;

HTTP endpoints can be accelerated using refresh_sql:

datasets:
- from: https://api.tvmaze.com
name: tvmaze
acceleration:
enabled: true
refresh_mode: full
refresh_sql: |
SELECT request_path, request_query, content
FROM tvmaze
request_path = '/search/people'
AND request_query IN ('q=michael', 'q=luke')

DynamoDB Data Connector Improvements

Improved Query Performance: The DynamoDB Data Connector now includes improved filter handling for edge cases, parallel scan support for faster data ingestion, and better error handling for misconfigured queries. These improvements enable more reliable and performant access to DynamoDB data.

Example Spicepod.yml configuration:

datasets:
- from: dynamodb:my_table
name: ddb_data
params:
scan_segments: 10 # Default `auto` which calculates optimal segments based on number of rows

S3 Versioning Support

Atomic Range Reads for Versioned Files: Spice now supports S3 Versioning for all connectors using object-store (S3, Delta Lake, etc.), ensuring range reads over versioned files are atomically correct. When S3 versioning is enabled, Spice automatically tracks version IDs during file discovery and uses them for all subsequent range reads, preventing inconsistencies from concurrent file modifications.

Current limitations:

  • Multi-file connections (e.g., partitioned datasets) do not yet support version tracking across all files
  • Version tracking is automatic when S3 versioning is enabled on the bucket

Search & Embeddings Enhancements

Full-Text Search on Views: Full-text search indexes are now supported on views, enabling advanced search scenarios over pre-aggregated or transformed data. This extends the power of Spice's search capabilities beyond base datasets.

Multi-Column Embeddings on Views: Views now support embedding columns, enabling vector search and semantic retrieval on view data. This is useful for search over aggregated or joined datasets.

Vector Engines on Views: Vector search engines are now available for views, enabling similarity search over complex queries and transformations.

Example Spicepod.yml configuration:

views:
- name: aggregated_reviews
sql: SELECT review_id, review_text FROM reviews WHERE rating > 4
embeddings:
- column: review_text
model: openai:text-embedding-3-small

Dedicated Query Thread Pool (Now Enabled by Default)

Dedicated Query Thread Pool: Query execution and accelerated refreshes now run on their own dedicated thread pool, separate from the HTTP server. This prevents heavy query workloads from slowing down API responses, keeping health checks fast and avoiding unnecessary Kubernetes pod restarts under load.

This feature was opt-in in previous releases and is now enabled by default in v1.9.0-rc.2. To disable it and revert to the previous behavior, add the following spicepod.yaml configuration:

runtime:
params:
dedicated_thread_pool: none

Query Performance Optimizations

Stale-While-Revalidate Cache Control: Query results now support "stale-while-revalidate" cache control, allowing stale cached data to be served immediately while asynchronously refreshing the cache entry in the background. This improves response times for frequently-accessed queries while maintaining data freshness. Requires cache key type to be set to "sql (raw)" for proper operation.

Optimized Prepared Statements: Prepared statement handling has been optimized for better performance with parameterized queries, reducing planning overhead and improving execution time for repeated queries.

Large RecordBatch Chunking: Large Arrow RecordBatch objects are now automatically chunked to control memory usage during query execution, preventing memory exhaustion for queries returning large result sets.

Query Result Cache: Stale-While-Revalidate

HTTP Cache-Control Support: The query result cache now supports the stale-while-revalidate Cache-Control directive, enabling faster response times by serving stale cached results immediately while asynchronously refreshing the cache in the background. This feature is particularly useful for applications that can tolerate slightly stale data in exchange for improved performance.

How it works:

When a cache entry is stale but within the stale-while-revalidate window, Spice will:

  1. Immediately return the stale cached result to the client
  2. Asynchronously re-execute the query in the background to refresh the cache
  3. Future requests will use the refreshed data

Configuration:

Use the Cache-Control HTTP header with the stale-while-revalidate directive:

Cache-Control: max-age=300, stale-while-revalidate=60

This configuration caches results for 5 minutes (300 seconds), and allows serving stale results for an additional 60 seconds while refreshing in the background.

Requirements:

  • Must use plan or raw SQL cache keys (set cache_key_type to sql or plan in results_caching configuration)
  • Background revalidation re-executes queries through the normal query path
  • Timestamp tracking automatically determines cache entry age for staleness checks

Example configuration via HTTP header:

GET /v1/sql
Cache-Control: max-age=600, stale-while-revalidate=120
X-Cache-Key-Type: sql

This feature improves application responsiveness while ensuring data freshness through background updates.

Security & Reliability Improvements

Enhanced HTTP Client Security: HTTP client usage across the runtime has been hardened with improved TLS validation, certificate pinning for critical endpoints, and better error handling for network failures.

ODBC Connector Improvements: Removed unwrap calls from the ODBC connector, improving error handling and reliability. Fixed secret handling and Kubernetes secret integration.

CLI Permissions Hardening: Tightened file permissions for the CLI and install script, ensuring secure defaults for configuration files and credentials.

Oracle Instant Client Pinning: Oracle Instant Client downloads are now pinned to specific SHAs, ensuring reproducible builds and preventing supply chain attacks.

AWS Authentication Improvements

Improved Credential Retry Logic: AWS SDK credential initialization has been significantly improved with more robust retry logic and better error handling. The system now automatically retries transient credential resolution failures using Fibonacci backoff, allowing Spice to tolerate extended AWS outages (up to ~48 hours) without manual intervention.

Key features:

  • Automatic retry with backoff: Implements Fibonacci backoff for transient credential failures (network issues, temporary AWS service disruptions)
  • Configurable retry limits: Supports up to 300 retry attempts with a maximum retry interval of 600 seconds
  • Better error handling: Distinguishes between retryable errors (connector errors) and non-retryable errors (misconfiguration)
  • Unauthenticated access support: Properly supports unauthenticated access to public S3 buckets without requiring credentials
  • Improved error messages: Provides detailed logging with attempt numbers, retry intervals, and error context for better troubleshooting

The improvements ensure more reliable AWS service integration, particularly in environments with intermittent network connectivity or during AWS service degradations.

Observability & Tracing

DataFusion Log Emission: The Spice runtime now emits DataFusion internal logs, providing deeper visibility into query planning and execution for debugging and performance analysis.

AI Completions Tracing: Fixed tracing so that ai_completions operations are correctly parented under sql_query traces, improving observability for AI-powered queries.

Git Data Connector (Alpha)

Version-Controlled Data Access: The new Git Data Connector (Alpha) enables querying datasets stored in Git repositories. This connector is ideal for use cases involving configuration files, documentation, or any data tracked in version control.

Example Spicepod.yml configuration:

datasets:
- from: git:https://github.com/myorg/myrepo
name: git_metrics
params:
file_format: csv

For more details, refer to the Git Data Connector Documentation.

Spice Java SDK 0.4.0

The Spice Java SDK have been upgraded with support configurable Arrow memory limit: spice-java v0.4.0

SpiceClient client = SpiceClient.builder()
.withArrowMemoryLimitMB(1024) // 1GB limit
.build();

CLI Improvements

Install Specific Versions: The spice install command now supports installing specific versions of the Spice runtime and CLI. This enables easy version management, downgrading, or installation of specific releases for testing or compatibility requirements.

Usage:

# Install a specific version
spice install v1.8.3

# Install a specific version with AI flavor
spice install v1.8.3 ai

# Install latest version (existing behavior)
spice install
spice install ai

Note: Homebrew installations require manual version management via brew install spiceai/spiceai/spice@<version>.

Persistent Query History: The Spice CLI REPL (SQL, search, and chat interfaces) now persists command history to ~/.spice/query_history.txt, making your query history available across sessions. The history file is automatically created if it doesn't exist, with graceful fallback if the home directory cannot be determined.

New REPL Commands:

  • .clear - Clear the screen using ANSI escape codes for a clean workspace
  • .clear history - Clear and persist the query history, removing all stored commands

Tab Completion: Tab completion now includes suggestions based on your command history, making it faster to re-run or modify previous queries.

Example usage:

sql> SELECT * FROM my_table;
sql> .clear # Clears the screen
sql> .clear history # Clears command history
sql> # Use arrow keys or tab to access previous commands

Additional Improvements & Bug Fixes

  • Reliability: Fixed refresh worker panics with recovery handling to prevent runtime crashes during acceleration refreshes.
  • Reliability: Improved error messages for missing or invalid spicepod.yaml files, providing actionable feedback for misconfiguration.
  • Reliability: Fixed DuckDB metadata pointer loading issues for snapshots.
  • Performance: Ensured ListingTable partitions are pruned correctly when filters are not used.
  • Reliability: Fixed vector dimension determination for partitioned indexes.
  • Search: Fixed casing issues in Reciprocal Rank Fusion (RRF) for hybrid search queries.
  • Search: Fixed search field handling as metadata for chunked search indexes.
  • Validation: Added timestamp support for partition expressions.
  • Validation: Fixed regexp_match function for DuckDB datasets.
  • Validation: Fixed partition name validation for improved reliability.

Contributors

Breaking Changes

No breaking changes.

Cookbook Updates

New HTTP Data Connector Recipe: New recipe demonstrating how to query REST APIs and HTTP(s) endpoints. See HTTP Connector Recipe for details.

The Spice Cookbook includes 82 recipes to help you get started with Spice quickly and easily.

Upgrading

To upgrade to v1.9.0-rc.2, use one of the following methods:

CLI:

spice upgrade

Homebrew:

brew upgrade spiceai/spiceai/spice

Docker:

Pull the spiceai/spiceai:1.9.0-rc.2 image:

docker pull spiceai/spiceai:1.9.0-rc.2

For available tags, see DockerHub.

Helm:

helm repo update
helm upgrade spiceai spiceai/spiceai

AWS Marketplace:

🎉 Spice is now available in the AWS Marketplace!

What's Changed

Dependencies

Changelog